Skip to main content Accessibility help
×
Home

Response of the longwave radiation over melting snow and ice to atmospheric warming

  • Antoon Meesters (a1) and Michiel van den Broeke (a2)

Abstract

Parameterizing the incoming longwave radiation L ↓ in terms of the fourth power of the absolute temperature at the reference height is used in glaciology for several purposes. In this paper, the validity of this kind of parameterization is investigated for the Greenland ice sheer, both by observations and by numerical simulation with a meso-scale model, It is found that such a parameterization severely underestimates the increase of L ↓ in response to large-scale warming in an area where surface melting is important. This is explained by the systematic influence that is exerted on the shape of the temperature profiles by surface melting.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Response of the longwave radiation over melting snow and ice to atmospheric warming
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Response of the longwave radiation over melting snow and ice to atmospheric warming
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Response of the longwave radiation over melting snow and ice to atmospheric warming
      Available formats
      ×

Copyright

References

Hide All
Greuell,, W. 1992. Numerical modelling of the energy balance and the englacial temperature at the ETH camp, West Greenland. Zürcher Geogr. Schr. 51.
Greuell,, J. W. and Konzelmann, T. 1994. Numerical modeling of the energy balance and the englacial temperature of the Greenland ice sheet: calculations for the ETH-Camp location (West Greenland, 1155 m.a.s.l.). Global and Planetary Change, 9(1 – 2), 91114.
Greuell,, W. and Oerlemans, J. 1989. Energy balance calculations on and near Hintereisferner (Austria) and an estimate of the effect of green-house warming on ablation. In Oerlemans,, J., ed. Glacier fluctuations and climatic change. Dordrecht, etc., Kluwer Academic Publishers, 305323.
König-Langlo,, G. and Augstein, E. 1994. Parameterisation of the downward long-wave radiation at the Earth’s surface in polar regions. Meteorol. Z., 3(6), 343347.
Konzelmann,, T., van de Wal, R.S.W., Greuell, J. W., Bintanja, R., Henneken, E. A. C. and Abe-Ouchi,, A. 1994. Parameterization of global and longwave incoming radiation for the Greenland ice sheet. Global and Planetary Change, 9(1 – 2), 143164.
Kuhn,, M. 1989. The response of the equilibrium line altitude to climatic fluctuations: theory and observations. In Oerlemans,, J., ed. Glacier fluctuation and climatic change. Dordrecht, etc., Kluwer Academic Publishers, 407417.
Meesters,, G.C.A. 1994. Dependence of the energy balance of the Greenland ice sheet on climate change: influence of katabatic wind and tundra. Q. J. R. Meteorol. Soc., 120(517), 491517.
Meesters,, A. G. C., Henneken,, E. A. C. Bink,, N. J., Vugts, H. F. and Cannemeijer, F. 1994. Simulation of the atmospheric circulation near the Greenland ice sheet margin. Global and planetary change, 9(1 – 2), 5367.
Oerlemans,, J. and Vugts, H. F. 1993. A meteorological experiment in the melting zone of the Greenland ice sheet. Bull. Am. Meteorol. Soc., 74(6), 355365.
Ohmura,, A. 1981. Climate and energy balance on Arctic tundra. Axel Heiberg Island, Canadian Arctic Archipelago, spring and summer 1969, 1970 and 1972. Zürcher Geogr. Schr. 3.
Savijärvi,, H. 1990. Fast radiation parameterization scheme for mesoscale and short-range forecast models. J. Appl. Meteorol., 29, 437447.
Van de Wal,, R. S. W. and Oerlemans, J. 1994. An energy balance model for the Greenland ice sheet. Global and Planetary Change, 9(1 – 2), 115131.
Van de Wal,, R. S. W. and 11 others. 1995. Mass balance measurements in the Søndre Srtømfjord area in the period 19901994. Z. Gletscherkd. Glazialgeol., 31(1), 5763.
Van den Brocke,, M. R., Duynkerke, P. G. and Oerlemans, J. 1994. The observed katabatic flow at the edge of the Greenland ice sheet during GIMEX-91. Global and Planetary Change, 9(1 – 2), 315.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed