Skip to main content Accessibility help
×
Home

Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I

  • Donald J. Cavalieri (a1), Karen M. St. Germain (a2) and Calvin T. Swift (a3)

Abstract

A problem in mapping the polar sea-ice covers in both hemispheres has been the sporadic false indication of sea ice over the open ocean and at the ice edge. These spurious sea-ice concentrations result from variations in sea-surface roughening by surface winds, atmospheric water vapor and both precipitating and non-precipitating liquid water. This problem was addressed for sea-ice concentrations derived from the Nimbus-7 scanning multi-channel microwave radiometer (SMMR) data through the development of a weather filter based on spectral information from the 18.0 and 37.0 GHz vertical polarization SMMR channels. Application of a similar filter for use with sea-ice concentration maps derived with the special-sensor microwave imager (SSM/I) sensor is less successful. This results from the position of the 19.35 GHz SSM/I channels, which are closer to the center of the 22.2 GHz atmospheric water-vapor line than are the SMMR 18.0 GHz channels. Thus, the SSM/I 19.35 GHz channels are more sensitive to changes in atmospheric water vapor, which results in greater contamination problems. An additional filter has been developed, based on a combination of the 19.35 and 22.2GHz. SSM/I channels. Examples of the effectiveness of the new filter are presented and limitations are discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I
      Available formats
      ×

Copyright

References

Hide All
Cavalieri, D.J. and 16 others. 1992. NASA sea ice validacion program for the DMSP SSM/I: final report. NASA Tech. Memo. 104559.
Gloersen, P. and Barath, F. 1977. A scanning multichannel microwave radiometer for Nimbus-G and SeaSat-A. IEEE J. Oceamic Eng., OE-2 (2). 172178.
Gloersen, P. and Cavalieri, D.J. 1986. Reduction of weather eftects in the calculation of sea ice concentration from microwave radiances. J. Geophys. Res., 91 (C3) 39133919.
Gloersen, P., Campbell, W.J., Cavalieri, D.J., Comiso, J. C., Parkinson, C.L. and Zwally, H.J. 1992. Arctic and Antarctic sea ice. 1978-1987: satellite passive-microwave observations and analysis. Washington. DC, National Aeronautics and Spare Administration. NASA SP-511.)
Maslanik, J. A. 1992. Effects of weather on the retrieval of sea ice concentration and ice type from passive microwave data. Int. J. Remote Sensing, 13 (1), 3754.
Nordberg, W., Conway, J., Ross, D.B. and Wilheit, T. 1971. Measurements of microwave emission from a foam-covered wind-driven sea. J. Atmos. Sci., 28, 429435.
St. Germain, K.M. 1993. Applications of spectral microwave radio-metry to sensing of sea ice and the ocean surface. (Ph.D. thesis, University of Massachusetts, Amherst.)
Swift, C.T. 1980. Passive-microwave remote sensing of ocean — a review. Boundary-Layer Meteorol., 18, 2554.
Ulaby, F.T., Moure, R.K. and Fung, A. K. 1981. Microwave remote sensing. Fundamentals and radiometry. Reading. MA, Addison-Weslcy Publishing Co.
Wilheit, T.T. and Chang, A.T.C. 1980. An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer. Radio Sci., 15 (3), 525544.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed