Skip to main content Accessibility help
×
Home

Primary, secondary and tertiary creep of ice modelled as a viscoelastic fluid

  • L. W. Morland (a1)

Abstract

As an ice sheet evolves, there are ice elements near the surface only recently subjected to stress following deposition, and others that have been subjected to stress over many ranges of time. The constant stress and constant strain-rate responses of ice in uniaxial compressive stress exhibit non-viscous behaviour, that is, the strain rate is not fixed by the stress (and conversely) but both vary with time. At constant stress the initial primary strain rate decreases with time to a minimum, described as secondary creep. It then increases and approaches an asymptotic limit, described as tertiary creep. Analogously, at constant strain rate the initial stress increases to a maximum then decreases to an asymptotic limit. These responses are used to construct a simple viscoelastic fluid constitutive law of differential type. Such a time-dependent law, with timescales changing widely with temperature, can be expected to yield a flow field in an ice sheet that is very different from that obtained from the viscous law. Only comparison solutions for both constitutive laws can determine the differences and significance of the non-viscous behaviour, and the simple law constructed would be a candidate for such comparisons.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Primary, secondary and tertiary creep of ice modelled as a viscoelastic fluid
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Primary, secondary and tertiary creep of ice modelled as a viscoelastic fluid
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Primary, secondary and tertiary creep of ice modelled as a viscoelastic fluid
      Available formats
      ×

Copyright

References

Hide All
Alley, R.B. 1988. Fabrics in polar ice sheets: development and prediction. Science, 240(4851), 493495.
Azuma, N. and Higashi, A.. 1985. Formation processes of ice fabric pattern in ice sheets. Ann. Glaciol., 6, 130134.
Budd, W.F. and Jacka, T.H.. 1989. A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol., 16(2), 107144.
Gao, X.Q. and Jacka, T.H.. 1987. The approach to similar tertiary creep rates for Antarctic core ice and laboratory prepared ice. J. Phys. IV [Paris], 48(3), Supplément, 289295.
Glen, J.W. 1955. The creep of polycrystalline ice. Proc. R. Soc. London, Ser. A, 228(1175), 519538.
Hooke, R.LeB. and 11 others. 1980. Mechanical properties of polycrystalline ice: an assessment of current knowledge and priorities for research. Cold Reg. Sci. Technol., 3(4), 263275.
Jacka, T.H. 1984a. Laboratory studies on relationships between ice crystal size and flow rate. Cold Reg. Sci. Technol., 10(1), 3142.
Jacka, T.H. 1984b. The time and strain required for development of minimum strain rates in ice. Cold Reg. Sci. Technol., 8(3), 261268.
Jacka, T.H. and Budd, W.F.. 1991. The use of tertiary creep rates in ice at high strains in compression and shear. In Jones, S.J., McKenna, R.F., Tillotson, J. and Jordaan, I.J., eds. Ice–structure Interaction. IUTAM/IAHR Symposium, St. John’s, Newfoundland, Canada, 1989. Berlin, etc., Springer-Verlag, 2135.
Jacka, T.H. and Li, J.. 2000. Flow rates and crystal orientation fabrics in compression of polycrystalline ice at low temperatures and stresses. In Hondoh, T., ed. Physics of ice core records. Sapporo, Hokkaido University Press, 83102.
Jacka, T.H. and Maccagnan, M.. 1984. Ice crystallographic and strain rate changes with strain in compression and extension.
Mellor, M. 1980. Mechanical properties of polycrystalline ice. In Tryde, P., ed. Physics and Mechanics of Ice. IUTAM Symposium, Technical University of Denmark, Copenhagen, 6–10 August 1979. Berlin, Springer-Verlag, 217265.
Mellor, M. and Testa, R.. 1969. Effect of temperature on the creep of ice. J. Glaciol., 8(52), 131145.
Morland, L.W. 1979. Constitutive laws for ice. Cold Reg. Sci. Technol., 1(2), 101108.
Morland, L.W. 1997. Radially symmetric ice sheet flow. Philos. Trans. R. Soc. London, Ser. A, 355(1730), 18731904.
Morland, L.W. and Lee, E.H.. 1960. Stress analysis for linear viscoelastic materials with temperature variation. Trans. Soc. Rheol., 4, 233263.
Morland, L.W. and Spring, U.. 1981. Viscoelastic fluid relation for the deformation of ice. Cold Reg. Sci. Technol., 4(3), 255268.
Morland, L.W. and Staroszczyk, R.. 2006. Steady radial ice-sheet flow with fabric evolution. J. Glaciol., 52(177), 267280.
Smith, G.D. and Morland, L.W.. 1981. Viscous relations for the steady creep of polycrystalline ice. Cold Reg. Sci. Technol., 5(2), 141150.
Steinemann, S. 1954. Flow and recrystallization of ice. IASH Publ. 39 (General Assembly of Rome 1954 – Snow and Ice, Vol. 4), 449462.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed