Skip to main content Accessibility help
×
Home

Potential for stratigraphie folding near ice-sheet centers

  • Edwin D. Waddington (a1), John F. Bolzan (a2) and Richard B. Alley (a3)

Abstract

Lack of agreement between the deep portions of the Greenland Icecore Project (GRIP) and Greenland Ice Sheet Project II (GISP2) ice cores from central Greenland suggests that folds may disrupt annual layering, even near ice divides. We use a simple kinematic flow model to delineate regions where slope disturbances (“wrinkles”) introduced into the layering could overturn into recumbent folds, and where they would flatten, leaving the stratigraphic record intact. Wrinkles are likely to originate from flow disturbances caused internally by inhomogeneities and anisotropy in the ice rheological properties, rather than from residual surface structures (sastrugi), or from open folds associated with transient flow over bed topography. If wrinkles are preferentially created in anisotropic ice under divides, where the resolved shear stress in the easy-glide direction can be weak and variable, then the deep intact climate record at Dye 3 may result from its greater distance from the divide. Alternatively, the larger simple shear at Dye 3 may rapidly overturn wrinkles, so that they are not recognizable as folds. The ice-core record from Siple Dome may be intact over a greater fraction of its depth compared to the central Greenland records if its flat bedrock precludes fluctuations in the stress orientation near the divide.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Potential for stratigraphie folding near ice-sheet centers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Potential for stratigraphie folding near ice-sheet centers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Potential for stratigraphie folding near ice-sheet centers
      Available formats
      ×

Copyright

References

Hide All
Alley, R. B. 1992. Flow-law hypotheses for ice-sheet modeling. J. Glaciol., 38(129), 245256.
Alley, R. B., Gow, A. J., Johnsen, S. J., Kipfstuhl, J., Meese, D. A. and Thorsteinsson, Th.. 1995. Comparison of deep ice cores. Nature, 373(6513), 393394.
Alley, R. B., Gow, A. J., Meese, D. A., Fitzpatrick, J. J., Waddington, E. D. and Bolzan, J. F.. 1997. Grain-scale processes, folding and stratigraphic disturbance in the GISP2 ice core. J. Geophys. Res., 102(C12), 26,81926,830.
Anandakrishnan, S., Alley, R. B. and Waddington, E. D.. 1994. Sensitivity of the ice-divide position in Greenland to climate change. Geophys. Res. Lett., 21(6), 441444.
Azuma, N. 1994. A flow law for anisotropic ice and its application to ice sheets. Earth Planet. Sci. Lett., 128(3–4), 601614.
Azuma, N. and Goto-Azuma, K.. 1996. An anisotropic flow law for ice-sheet ice and its implications. Ann. Glaciol., 23, 202208.
Bolzan, J. F. and Strobel, M.. 1994. Accumulation-rate variations around Summit, Greenland. J. Glaciol., 40(134), 5666.
Castelnau, O. and 7 others. 1998. Anisotropic behavior of GRIP ices and flow in central Greenland. Earth Planet. Sci. Lett., 154(1–4), 307322.
Cuffey, K. M., Thorsteinsson, T. and Waddington, E. D.. 2000. A renewed argument for crystal size control of ice sheet strain rates. J. Geophys. Res., 105(B12), 27,88927,894.
Cunningham, J. and Waddington, E. D.. 1990. Boudinage: a source of stratigraphic disturbance in glacial ice in central Greenland. J. Glaciol., 36(124), 269272.
Dahl-Jensen, D. and Gundestrup, N. S.. 1987. Constitutive properties of ice at Dye 3, Greenland. International Association of Hydrological Sciences Publication 170(Symposium at Vancouver 1987 — The Physical Basis of Ice Sheet Modelling), 3143.
Dahl-Jensen, D., Thorsteinsson, T., Alley, R. and Shoji, H.. 1997. Flow properties of the ice from the Greenland Ice Core Project ice core: the reason for folds? J. Geophys. Res., 102(C12), 26,83126,840.
Dansgaard, W., Clausen, H. B., Gundestrup, N., Johnsen, S. J. and Rygner, C.. 1985. Dating and climatic interpretation of two deep Greenland ice cores. In Langway, C. C. Jr, Oeschger, H. and Dansgaard, W., eds. Greenland ice core: geophysics, geochemistry, and the environment. Washington, DC, American Geophysical Union, 7176. (Geophysical Monograph 33.)
Glen, J. W. 1958. The flow law of ice: a discussion of the assumptions made in glacier theory, their experimental foundation and consequences. International Association of Scientific Hydrology Publication 47 (Symposium at Chamonix 1958 — Physics of the Movement of the Ice), 171183.
Goldsby, D. L. and Kohlstedt, D. L.. 1997. Grain boundary sliding in finegrained ice I. Scripta Mater., 37(9), 13991406.
Gow, A. J. and 6 others. 1997. Physical and structural properties of the Green-land Ice Sheet Project 2 ice cores: a review. J. Geophys. Res., 102(C12), 26,55926,575.
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. and Jouzel, J.. 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366(6455), 552554.
Hempel, L. and Thyssen, F.. 1993. Deep radio echo soundings in the vicinity of GRIP and GISP2 drill sites, Greenland. Polarforschung, 62(1), 1992, 1116.
Hudleston, P. J. 1976. Recumbent folding in the base of the Barnes Ice Cap, Baffin Island, Northwest Territories, Canada. Geol. Soc. Am. Bull., 87(12), 16841692.
Hudleston, P. J. and Hooke, R. Le B.. 1980. Cumulative deformation in the Barnes Ice Cap and implications for the development of foliation. Tectono-physics, 66(1–3), 127146.
Hvidberg, C. S. 1996. Steady-state thermomechanical modelling of ice flow near the centre of large ice sheets with the finite-element technique. Ann. Glaciol., 23, 116123.
Hvidberg, C. S., Keller, K., Gundestrup, N. S., Tscherning, C. C. and Forsberg, R.. 1997. Mass balance and surface movement of the Greenland ice sheet at Summit, central Greenland. Geophys. Res. Lett., 24(18), 23072310.
Jacobel, R. W. and Hodge, S. M.. 1995. Radar internal layers from the Greenland summit. Geophys. Res. Lett., 22(5), 587590.
Jacobson, H. P. 2001. Folding of stratigraphic layers in ice domes. (Ph.D. thesis, Universityof Washington.)
Johnsen, S. J. and 9 others. 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359(6393), 311313.
Johnson, A. M. and Fletcher, R. C.. 1994. Folding of viscous layers: mechanical analysis and interpretation of structures in deformed rock. New York, Columbia University Press.
Marshall, S. J. and Cuffey, K. M.. 2000. Peregrinations of the Greenland ice sheet divide in the last glacial cycle: implications for central Greenland ice cores. Earth Planet. Sci. Lett., 179(1), 7390.
Means, W. D., Hobbs, B. E., Lister, G. S. and Williams, P. F.. 1980. Vorticity and non-coaxiality in progressive deformations. J. Struct. Geol., 2(3), 371378.
Nereson, N. A., Waddington, E. D., Raymond, C. F. and PJacobson, H.. 1996. Predicted age–depth scales for Siple Dome and inland WAIS ice cores in West Antarctica. Geophys. Res. Lett., 23(22), 31633166.
Nereson, N. A., Raymond, C. F., Waddington, E. D. and Jacobel, R. W.. 1998. Migration of the Siple Dome ice divide, West Antarctica. J. Glaciol., 44(148), 643652.
Nereson, N. A., Raymond, C. F., Jacobel, R. W. and Waddington, E. D.. 2000. The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers. J. Glaciol., 46(152), 7587.
Nye, J. F. 1959. The motionofice sheets and glaciers. J. Glaciol, 3(26), 493507.
Paterson, W. S. B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Raymond, C. F. 1983. Deformation in the vicinity of ice divides. J. Glaciol., 29(103), 357373.
Reeh, N. 1988. A flow-line model for calculating the surface profile and the velocity, strain-rate, and stress fields in an ice sheet. J. Glaciol., 34(116), 4654.
Reeh, N. 1989. The age–depth profile in the upper part of a steady-state ice sheet. J. Glaciol., 35(121), 406417.
Reeh, N., Johnsen, S. J. and Dahl-Jensen, D.. 1985. Dating the Dye 3 deep ice core by flow model calculations. In Langway, C. C. Jr, Oeschger, H. and Dansgaard, W., eds. Greenland ice core: geophysics, geochemistry, and the environment. Washington, DG, American Geophysical Union, 5765. (Geophysical Monograph 33.)
Schøtt, G., Waddington, E. D. and Raymond, C. F.. 1992. Predicted time- scales for GISP2 and GRIP boreholes at Summit, Greenland. J. Glaciol., 38(128), 162168.
Smith, R. B. 1977. Formation of folds, boudinage and mullions in non-Newtonian materials. Geol. Soc. Am. Bull., 88(2), 312320.
Staffelbach, T., Stauffer, B. and Oeschger, H.. 1988. A detailed analysis of the rapid changes in ice-core parameters during the last ice age. Ann. Glaciol, 10, 167170.
Taylor, K. G. and 9 others. 1993. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature, 366(6455), 549552.
Thorsteinsson, Th. and Waddington, E. D.. In press. Folding in strongly anisotropic layers near ice sheet centers. Ann. Glaciol, 35.
Thorsteinsson, Th., Kipfstuhl, J. and Miller, H.. 1997. Textures and fabrics in the GRIP ice core. J. Geophys. Res., 102(G12), 26,58326,599.
Thorsteinsson, T., Waddington, E. D., Taylor, K. C., Alley, R. B. and Blankenship, D. D.. 1999. Strain-rate enhancement at Dye 3, Greenland. J. Glaciol., 45(150), 338345.
Waddington, E. D., Bolzan, J. F. and Alley, R. B.. 1995. The origin of folding in ice cores. [Abstract] Eos, 76(17), Spring Meeting Supplement, S177.
Whillans, I. M. and Johnsen, S. J.. 1983. Longitudinal variations in glacial flow: theory and test using data from the Byrd Station strain network, Antarctica. J. Glaciol., 29(101),7897.

Potential for stratigraphie folding near ice-sheet centers

  • Edwin D. Waddington (a1), John F. Bolzan (a2) and Richard B. Alley (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed