Skip to main content Accessibility help
×
Home

Pleistocene ice at the bottom of the Vavilov ice cap, Severnaya Zemlya, Russian Arctic

  • Michel Stiévenard (a1), Vladimir Nikolaëv (a2), Dmitri Yu Bol’shiyanov (a3), Christine Fléhoc (a1), Jean Jouzel (a4), Oleg L. Klementyev (a3) and Roland Souchez (a5)...

Abstract

The Vavilov ice cap was perforated in 1988 by a drilling which reached the underlying frozen sediments. In contrast to the overlying glacier ice, the basal ice is composed of different ice layers with a variable debris load. The stable-isotope composition of these layers shows δ values much lower than everywhere else in the core or in the Vavilov ice cap. This is most probably the signature of a remnant of Pleistocene ice which, for the first time, is shown to occur in the Russian Arctic.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pleistocene ice at the bottom of the Vavilov ice cap, Severnaya Zemlya, Russian Arctic
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pleistocene ice at the bottom of the Vavilov ice cap, Severnaya Zemlya, Russian Arctic
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pleistocene ice at the bottom of the Vavilov ice cap, Severnaya Zemlya, Russian Arctic
      Available formats
      ×

Copyright

References

Hide All
Arnason,, B. 1969. Equilibriu contant for the fractionation of deuterium between ice and water. J. Phys. Chem., 73 (10), 34913494.
Barkov,, N. I. and 7 others. 1992. Novyye dannyyw o stroyenii i razvittii lednika Vavilova na Severnoy Zemle [New data on the struture and development of the Vavilov ice dome, Severnaya Zemlya]. Mater. Glyatsio. Issled. 75, 3541.
Bol’shiyanov,, D. Yu. and Nikolayev,, V. I. 1992. Passivnyye ledniki na Severnoy Zemle [Inactive glaciers of Severnaya Zemyla]. Mater. Glyatsiol. Issled. 75, 7881.
Bol’shiyanov,, D. Yu., Klement’yev,, O. L. Korotkov,, I. M. and Nikolayev,, V. I. 1990. Issledovaniya kerna morenosoderzhashchego l’da lednika Vavilov ice dome, Severnaya Zemyla]. Mater. Glyatsiol. Issled. 70, 105110.
Dansgaard,, W. 1964. Stable isotopes in precipitation. Tellus, 16 (4), 436468.
Faustova,, M. A. and Velichko,, A. A. 1992. Dynamics of the last glaciation in northern Eurasia. Sver. Geol. Unders., Ser. Ca 81, 113118.
Gordon,, J. E., Darling,, W. G., Whalley,, W. B. and Gellatly,, A. F. 1988. δD–δ18O relationship and the thermal history of basal ice near the margins of two glaciers in Lyngen, north Norwat. J. Glaciol., 34 (118), 265268.
Govorukha,, L. S. 1988. Sovremennoye nazemnoye oledeneniye Sovetskoy Arktiki [Present-day continental glaciation of the Soviet Arctic]. Leningrad, Gidrometeoizdat.
Jouzel,, J. and Souchez,, R. A. 1982. Melting–refreezing at the glacier sole and the isotopic composition of the ice. J. Glaciol., 28 (98), 3542.
Klement’yev,, O. L., Potapenko,, v. Yu. Savatyugin,, L. M. and Nikolayev., V. I. 1991. Studies of the internal structure and thermalhydrodunamic state of the Vavilov glacier, archipelago Severnaya Zemlya. International Association of Hydrological Sciences Publication 208 (Symposium at St. Petersburg 1990 — Glaciers–Ocean–Atmosphers Interactions), 4959.
Kotlyakov,, V. M., Korotkov,, I. M., Nikolayev,, V. M., Petrov,, V. N., Barkov,, N. I. and Klement’yev., O. L. 1989. Rekonstruktsiya klimata golotsyena po rezul’tatam issledovaniya ledyanogo kerna lednika Vavilova na Severnoy Zemle [Reconstruction of the Holocene cliate from the results of ice-core studies on the Vavilov ice dome. Severnaya Zemlya]. Mater. Glyatsiol. Issled. 67, 103108.
Kotlyakov,, V. M., Nikolayev,, V. M., Korotkov,, I. M. and Klement’yev., O. L. 1991. Klimatostratigrafiya golotsena lednikovykh kupolov Severnoy Zemli [Climate-stratigraphy of Severnaya Zemlya ice dome in the Holocene]. In Khudyakov,, G. I. ed. Stratigrafiya o korreliatsiya chetvertichnykh otlozhenii Azii i Tikhookeanskogo regiona [Stratigraphy and correlation of Quaternary deposits of East Asia and the Pacific region]. Moscow, Nauka, 100112.
Lindstrom,, D. R. and MacAyeal,, D. R. 1989. Scandinavian, Siberian and Arctic Ocean glaciation: effect of Holocene atmospheric CO2 variations. Science, 245 (4918), 628631.
Makeyev,, V. M., Arslanov,, H. A. and Garutt,, V. E. 1979. [Age of mammoths on Severnaya Zemlya and several questions on Late Pleistocene paleogeography]. Dokl. Akad. Nauk SSR, 245 (2), 421424.
Merlivat,, L. and Jouzel, .J 1979. Global climatic interpretation of the deuterium–oxygen 18 relationship for precipitation. J. Geophys. Res., 84 (C8), 50925033.
O’Neil,, J. R. 1968. Hydrogen and oxygen isotope fractionation between ice and water. J. Phys. Chem., 72 (10), 36833684.
Rozanski,, K., Araguás, L. and Gonfiantini., R. 1991. Isotopic patterns in modern global precipitation. In Swart,, P. K., Lohmann,, K. C., Mckenzie,, J. A. and Savin,, S. eds. Climate change in contential isotopic records. Washington, DC, American Geophysica Union, 136. (Geophysical Monograph 78.)
Souchez,, R. A. and Jouzel., J. 1984. On the isotopic composition in δD and δ18O of water and ice during freezing. J. Glaciol., 30 (106), 369372.
Souchez,, R. A., Lemmens,, M. Lorrain,, R. Tison, J. -L., Jouzel, J. and Sugden., D. 1990. Influence of hydroxyl-bearing minerals on the isotopic composition of ice from the basal zone of an ice sheet. Nature, 345 (6272), 244246.
Vaikmäe,, R. and Punning., J. -M. 1984. Isotope-geochemical investigations on glaciers in the Eurasian Arctic. In Mahaney,, W. C., ed. Correlation of Quaternary chronologies. Norwich, Geo Books, 385393.

Pleistocene ice at the bottom of the Vavilov ice cap, Severnaya Zemlya, Russian Arctic

  • Michel Stiévenard (a1), Vladimir Nikolaëv (a2), Dmitri Yu Bol’shiyanov (a3), Christine Fléhoc (a1), Jean Jouzel (a4), Oleg L. Klementyev (a3) and Roland Souchez (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed