Skip to main content Accessibility help
×
Home

Ocean-excited plate waves in the Ross and Pine Island Glacier ice shelves

  • ZHAO CHEN (a1), PETER D. BROMIRSKI (a1), PETER GERSTOFT (a1), RALPH A. STEPHEN (a2), DOUGLAS A. WIENS (a3), RICHARD C. ASTER (a4) and ANDREW A. NYBLADE (a5)...

Abstract

Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude variability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate landward from the ice front at close to shallow-water gravity-wave speeds (~70 m s−1). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ~3 km s−1. Flexural-gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity-wave excitation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ocean-excited plate waves in the Ross and Pine Island Glacier ice shelves
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ocean-excited plate waves in the Ross and Pine Island Glacier ice shelves
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ocean-excited plate waves in the Ross and Pine Island Glacier ice shelves
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Correspondence: Zhao Chen <zhc031@ucsd.edu>

References

Hide All
Bindschadler, R, Vaughan, DG and Vornberger, P (2011) Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica. J. Glaciol., 57(204), 581595
Bromirski, PD, Sergienko, OV and MacAyeal, DR (2010) Transoceanic infragravity waves impacting Antarctic ice shelves. Geophys. Res. Lett., 37(2), L02502. doi: 10.1029/2009GL041488
Bromirski, PD and 7 others (2015) Ross ice shelf vibrations. Geophys. Res. Lett., 42(18), 75897597
Bromirski, PD and 8 others (2017) Tsunami and infragravity waves impacting Antarctic ice shelves. J. Geophys. Res. C: Oceans, 122(7), 57865801
Brunt, KM, Okal, EA and MacAyeal, DR (2011) Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011. J. Glaciol., 57(205), 785788
Chapman, CC, Hogg, AM, Kiss, AE and Rintoul, SR (2015) The dynamics of Southern Ocean storm tracks. J. Phys. Oceanogr., 45(3), 884903
Chen, Z, Gerstoft, P and Bromirski, PD (2016) Microseism source direction from noise cross-correlation. Geophys. J. Int., 205(2), 810818
Christianson, K and 19 others (2016) Sensitivity of Pine Island Glacier to observed ocean forcing. Geophys. Res. Lett., 43(20), 1081710825
Diez, A and 8 others (2016) Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf Antarctica. Geophys. J. Int., 205(2), 785
Dziewonski, AM and Anderson, DL (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(4), 297356
Fox, C and Squire, VA (1990) Reflection and transmission characteristics at the edge of shore fast sea ice. J. Geophys. Res. C: Oceans, 95(C7), 1162911639
Fox, C and Squire, VA (1991) Coupling between the ocean and an ice shelf. Ann. Glaciol., 15, 101108
Fretwell, P and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375393
Graff, KF (1991) Wave Motion in Elastic Solids, Revised Edn. Dover Publications, New York.
Herbers, THC, Elgar, S and Guza, RT (1995) Generation and propagation of infragravity waves. J. Geophys. Res. C: Oceans, 100(C12), 2486324872
Holdsworth, G and Glynn, J (1978) Iceberg calving from floating glaciers by a vibrating mechanism. Nature, 274(5670), 464466
Holland, D and Bindschadler, R (2012) Observing Pine Island Glacier (PIG) ice shelf deformation and fracture using a GPS and Seismic Network. International Federation of Digital Seismograph Networks. Other/Seismic Network. (doi: 10.7914/SN/XC_2012)
Jacobs, SS, Hellmer, HH and Jenkins, A (1996) Antarctic Ice Sheet melting in the southeast Pacific. Geophys. Res. Lett., 23(9), 957960
Johnson, DH and Dudgeon, DE (1993) Array Signal Processing: Concepts and Techniques. Prentice Hall.
Joughin, I, Rignot, E, Rosanova, CE, Lucchitta, BK and Bohlander, J (2003) Timing of recent accelerations of Pine Island Glacier, Antarctica. Geophys. Res. Lett., 30(13), 1706. doi: 10.1029/2003GL017609
Joughin, I, Smith, BE and Holland, DM (2010) Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys. Res. Lett., 37(20), L20502. doi: 10.1029/2010GL044819
Jurkevics, A (1988) Polarization analysis of three-component array data. Bull. Seismol. Soc. Am., 78(5), 17251743
Kundu, PK, Cohen, IM and Dowling, DR (2011) Fluid Mechanics, 5th edn. Academic Press, Boston.
Lamb, H (1889) On the flexure of an elastic plate. Proc. London Math. Soc., s1–21(1), 7091
Lamb, H (1917) On waves in an elastic plate. Proc. R. Soc. London, Ser. A, 93(648), 114128
Lipovsky, BP (2018) Ice shelf rift propagation and the mechanics of wave-induced fracture. J. Geophys. Res. C: Oceans, 123, 40144033. doi: 10.1029/2017JC013664
MacAyeal, DR (1987) Ice-shelf backpressure: form drag versus dynamic drag. In Van der Veen, CJ & Oerlemans, J, eds. Dynamics of the West Antarctic Ice Sheet. Springer, Dordrecht, Netherlands, 141160, ISBN 9789400937451
MacAyeal, DR and 13 others (2006) Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere. Geophys. Res. Lett., 33(17), L17502. doi: 10.1029/2006GL027235
Massom, RA and 5 others (2018) Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature, 558(7710), 383389
Medley, B and 14 others (2014) Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. Cryosphere, 8(4), 13751392
Munk, WH, Miller, GR, Snodgrass, FE and Barber, NF (1963) Directional recording of swell from distant storms. Philos. Trans. R. Soc. London, Ser. A, 255(1062), 505584
Paolo, FS, Fricker, HA and Padman, L (2015) Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232), 327331
Pritchard, HD and 5 others (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505
Rayleigh, L (1888) On the free vibrations of an infinite plate of homogeneous isotropic elastic matter. Proc. London Math. Soc., s1–20(1), 225237
Rignot, E and 5 others (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett., 31(18), L18401. doi: 10.1029/2004GL020697
Robinson, ES (1983) Flexural-gravity waves on floating stratified ice. J. Glaciol., 29(101), 133141
Sabra, KG, Roux, P and Kuperman, WA (2005) Emergence rate of the time-domain Green's function from the ambient noise cross-correlation function. J. Acoust. Soc. Am., 118(6), 35243531
Scambos, TA, Dutkiewicz, MJ, Wilson, JC and Bindschadler, RA (1992) Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ., 42(3), 177186
Scambos, TA, Bohlander, JA, Shuman, CA and Skvarca, P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31(18), L18402. doi: 10.1029/2004GL020670
Scambos, TA, Haran, TM, Fahnestock, MA, Painter, TH and Bohlander, J (2007) MODIS-based mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens. Environ., 111(2), 242257
Schmidt, H (2004) OASES version 3.1 user guide and reference manual
Sergienko, OV (2010) Elastic response of floating glacier ice to impact of long-period ocean waves. J. Geophys. Res. F: Earth Surf., 115(F4), F04028. doi: 10.1029/2010JF001721
Sergienko, OV (2017) Behavior of flexural gravity waves on ice shelves: application to the Ross Ice Shelf. J. Geophys. Res. C: Oceans, 122(8), 61476164
Thoma, M, Jenkins, A, Holland, D and Jacobs, S (2008) Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett., 35(18), L18602. doi: 10.1029/2008GL034939
Tolman, HL (2009) User manual and system documentation of WAVEWATCH III TM version 3.14. Technical Note, MMAB Contribution, 276
Trenberth, KE (1991) Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48(19), 21592178
Uchiyama, Y and McWilliams, JC (2008) Infragravity waves in the deep ocean: Generation, propagation, and seismic hum excitation. J. Geophys. Res. C: Oceans, 113(C7), C07029. doi: 10.1029/2007JC004562
Van Trees, HL (2002) Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. Wiley-Interscience. John Wiley & Sons, New York. doi: 10.1002/0471221104
Vidale, JE (1986) Complex polarization analysis of particle motion. Bull. Seismol. Soc. Am., 76(5), 13931405.
Viktorov, IA (1967) Rayleigh and Lamb waves: Physical Theory and Applications. Plenum, New York.

Keywords

Type Description Title
PDF
Supplementary materials

Chen et al. supplementary material
Figures S1-S4

 PDF (660 KB)
660 KB

Ocean-excited plate waves in the Ross and Pine Island Glacier ice shelves

  • ZHAO CHEN (a1), PETER D. BROMIRSKI (a1), PETER GERSTOFT (a1), RALPH A. STEPHEN (a2), DOUGLAS A. WIENS (a3), RICHARD C. ASTER (a4) and ANDREW A. NYBLADE (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed