Skip to main content Accessibility help

Non-surface mass balance of glaciers in Iceland

  • Tómas Jóhannesson (a1), Bolli Pálmason (a1), Árni Hjartarson (a2), Alexander H. Jarosch (a3), Eyjólfur Magnússon (a4), Joaquín M. C. Belart (a4) and Magnús Tumi Gudmundsson (a4)...


Non-surface mass balance is non-negligible for glaciers in Iceland. Several Icelandic glaciers are in the neo-volcanic zone where a combination of geothermal activity, volcanic eruptions and geothermal heat flux much higher than the global average lead to basal melting close to 150 mm w.e. a−1 for the Mýrdalsjökull ice cap and 75 mm w.e. a−1 for the largest ice cap, Vatnajökull. Energy dissipation in the flow of water and ice is also rather large for the high-precipitation, temperate glaciers of Iceland resulting in internal and basal melting of 20–150 mm w.e. a−1. The total non-surface melting of glaciers in Iceland in 1995–2019 was 45–375 mm w.e. a−1 on average for the main ice caps, and was largest for Mýrdalsjökull, the south side of Vatnajökull and Eyjafjallajökull. Geothermal melting, volcanic eruptions and the energy dissipation in the flow of water and ice, as well as calving, all contribute, and thus these components should be considered in mass-balance studies. For comparison, the average mass balance of glaciers in Iceland since 1995 is −500 to −1500 mm w.e. a−1. The non-surface mass balance corresponds to a total runoff contribution of 2.1 km3 a−1 of water from Iceland.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Non-surface mass balance of glaciers in Iceland
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Non-surface mass balance of glaciers in Iceland
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Non-surface mass balance of glaciers in Iceland
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Tómas Jóhannesson, E-mail:


Hide All
Aðalgeirsdóttir, G and 11 others (in review 2020) Glacier changes in Iceland in the 20th and 21st centuries. Frontiers in Earth Science.
Alexander, D, Davies, T and Schulmeister, J (2013) Basal melting beneath a fast-flowing temperate tidewater glacier. Annals of Glaciology 54(63), 265271. doi: 10.3189/2013-AoG-63-A-259
Alexander, D, Shulmeister, J and Davies, T (2011) High basal melting rates within high-precipitation temperate glaciers. Journal of Glaciology 57(205), 789795. doi: 10.3189/002214311798043726
Andreassen, LM, Elvehøy, H, Kjøllmoen, B and Engeset, RV (2016) Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers. The Cryosphere 10(2), 535552. doi: 10.5194/tc-10-535-2016
Bahr, DB, Meier, MF and Peckham, SD (1997) The physical basis of glacier volume–area scaling. Journal of Geophysical Research: Solid Earth 102(B9), 2035520362. doi: 10.1029/97JB01696
Belart, JMC (2018) Mass Balance of Icelandic Glaciers in Variable Climate (PhD-thesis). Faculty of Earth Sciences, University of Iceland, 171 p.
Bengtsson, L and 22 others (2017) The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Monthly Weather Review 145, 19191935. doi: 10.1175/MWR-D-16-0417.1
Bergsdóttir, HL (2012) Orkubúskapur Jökulsárlóns á Breiðamerkursandi [The energy balance of Jökulsárlón lagoon on Breiðamerkursandur] (BS report). Faculty of Earth Sciences, University of Iceland, 23 p.
Björnsson, F (1998) Samtíningur um jökla milli Fells og Staðarfjalls. Jökull 46, 4961.
Björnsson, H (1983) A natural calorimeter at Grímsvötn; an indicator of geothermal and volcanic activity. Jökull 33, 1318.
Björnsson, H (1996) Scales and rates of glacial sediment removal: a 20 km long and 300 m deep trench created beneath Breiðamerkurjökull during the Little Ice Age. Annals of Glaciology 22, 141146. doi: 10.3189/1996AoG22-1-141-146
Björnsson, H (2009) Jöklar á Íslandi [Glaciers in Iceland]. Reykjavík, Opna, 479 p. ISBN: 978-9935-10-004-7
Björnsson, H and 8 others (2013) Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age. Geophysical Research Letters 40(8), 15461550. doi: 10.1002/grl.50278
Björnsson, H and Gudmundsson, MT (1993) Variations in the thermal output of the subglacial Grímsvötn caldera, Iceland. Geophysical Research Letters 20(19), 21272130. doi: 10.1029/93GL01887
Björnsson, H and Pálsson, F (2008) Icelandic glaciers. Jökull 58, 365386.
Björnsson, H, Pálsson, F and Gudmundsson, S (2001) Jökulsárlón at Breiðamerkurjökull, Vatnajökull, Iceland: 20th century changes and future outlook. Jökull 50, 118.
Björnsson (English translation: D'Arcy JM), H (2017) The Glaciers of Iceland: A Historical, Cultural and Scientific Overview, Reykjavík, Atlantic Press, Serie: Atlantis Advances in Quaternary Science v. 2, 613 p. doi:10.2991/978-94-6239-207-6
Brandon, M, Hodgkins, H, Björnsson, H and Ólafsson, J (2017) Multiple melt plumes observed at the Breiðamerkurjökull ice face in the upper waters of Jökulsárlón lagoon, Iceland. Annals of Glaciology 58(74), 131143. doi: 10.1017/aog.2017.10
Cogley, JG and 10 others (2011) Glossary of Glacier Mass Balance and Related Terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris.
Crochet, P and 6 others (2007) Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. Journal of Hydrometeorology 8, 12851306. doi: 10.1175/2007JHM795.1
Crochet, P (2013) Preliminary Evaluation of Harmonie NWP Model Simulations of Precipitation Over Iceland (Tech. Rep. PC/2013-02). Reykjavík, Icel. Meteorol. Office, 31 p.
Cuffey, KM and Paterson, WSB (2010) The Physics of Glaciers, 4th Edn. Oxford: Elsevier.
Davies, JH (2013) Global map of solid Earth surface heat flow. Geochemistry, Geophysics, Geosystems 14(10), 46084622. doi: 10.1002/ggge.20271
Dee, DP and 35 others (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137(656), 553597. doi: 10.1002/qj.828C
Fahnestock, M, Abdalati, W, Joughin, I, Brozena, J and Goginen, P (2001) High geothermal heat flow, basal melt, and the origin of rapid ice flow in Central Greenland. Science (New York, N.Y.) 294(5550), 23382342. doi: 10.1126/science.1065370
Fischer, AT and 5 others (2015) High geothermal heat flux measured below the West Antarctic Ice Sheet. Science Advances 1(6), e1500093. doi: 10.1126/sciadv.1500093
Flowers, GE, Marshall, SJ, Björnsson, H and Clarke, GKC (2005) Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate warming over the next 2 centuries. Journal of Geophysical Research: Earth Surface 110, F02011. doi: 10.1029/2004JF000200
Gíslason, SR (1992) Efnagreiningar 1985–1992 [Chemical Analysis of Water Samples] (Tech. Rep. RH-23-92). Reykjavík, Science Institute, University of Iceland, 28 p.
Gíslason, SR and Eugster, HP (1987) Meteoric water–basalt interactions. II: A field study in N.E. Iceland. Geochimica et Cosmochimica Acta 51(10), 28412855. doi: 10.1016/0016-7037(87)90162-1
Greve, R (2019) Geothermal heat flux distribution for the Greenland ice sheet, derived by combining a global representation and information from deep ice cores. Polar Data Journal 3, 2236. doi: 10.20575/00000006
Gudmundsson, MT (2005) Subglacial volcanic activity in Iceland. Developments in Quaternary Sciences 5, 127151. doi: 10.1016/S1571-0866(05)80008-9
Gudmundsson, MT and 12 others (2012) Ash generation and distribution from the April–May 2010 eruption of Eyjafjallajökull, Iceland. Scientific Reports 2, 572. doi: 10.1038/srep00572
Gudmundsson, MT, Björnsson, H and Pálsson, F (1995) Changes in jökulhlaup sizes in Grímsvötn, Vatnajökull, Iceland, 1934–91, deduced from in-situ measurements of subglacial lake volume. Journal of Glaciology 41(138), 263272. 10.3189/S0022143000016166
Gudmundsson, MT, Högnadóttir, Th, Kristinsson, AB and Gudbjörnsson, S (2007) Geothermal activity in the subglacial Katla caldera, Iceland, 1999–2005, studied with radar altimetry. Annals of Glaciology 45, 6672. doi: 10.3189/172756407782282444
Gudmundsson, MT, Högnadóttir, T and Rossi, C (2016) D5.7 – Ice Evolution. Time Series of Elevation Changes During Caldera Collapse and Geothermal Activity in Iceland (Tech. Rep. Deliverable 5.7). Reykjavík, FutureVolc, 42 p.
Gudmundsson, MT, Larsen, G, Höskuldsson, Á and Gylfason, ÁG (2008) Volcanic hazards in Iceland. Jökull 58, 251268.
Gudmundsson, MT, Magnússson, E, Högnadóttir, Th, Pálsson, F and Rossi, C (2018) Hættumat vegna jökulhlaupa í Skaftá. Skaftárkatlar – saga og þróun 1938–2018 [Hazard assessment for jökulhlaups in Skaftá River. Skaftárkatlar – history and development 1938–2018] (Rep. RH-16-2018). Reykjavík, Inst. Earth Sci., Icel. Meteorol. Office, Rep. VÍ 2018-017.
Gudmundsson, MT, Sigmundsson, F, Björnsson, H and Högnadóttir, Th(2004) The 1996 eruption at Gjálp, Vatnajökull ice cap, Iceland: efficiency of heat transfer, ice deformation and subglacial water pressure. Bulletin of Volcanology 66, 4665. doi: 10.1007/s00445-003-0295-9
Guðmundsson, Sn, Björnsson, H, Pálsson, F, Magnússon E, Sæmundsson, Th and Jóhannesson, T (2019) Terminus lagoons on the south side of Vatnajökull ice cap, SE-Iceland. Jökull 69, 134.
Guérin, C (2010) Velocity field, mass transport and calving of Breiðamerkurjökull, an outlet of Vatnajökull ice cap, Iceland, studied with satellite remote sensing and continuous GPS observations. Bordeaux: EGID Institute – University of Michel de Montaigne.
Gunnlaugsson, (2016) The Geodetic Mass Balance and Ice Thickness of Tungnafellsjökull Ice Cap (Master's thesis). Faculty of Earth Sciences, University of Iceland, 58 p.
Hannesdóttir, H, Björnsson, H, Pálsson, F, Aðalgeirsdóttir, G and Guðmundsson, Sn (2014) Variations of southeast Vatnajökull ice cap (Iceland) 1650–1900 and reconstruction of the glacier surface geometry at the Little Ice Age maximum. Geografiska Annaler Series A: Physical Geography 97(2), 237264. doi: 10.1111/geoa.12064
Hjartarson, Á (1994) Hydrogeological map, Þjórsárver 1914 III, 1:50.000. Reykjavík, National Land Survey of Iceland, National Energy Authority and National Power Company.
Hjartarson, Á (2015) Heat flow in Iceland. Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015.
Hjartarson, Á (in press 2020) Groundwater flow from Iceland's glaciers. In Williams Jr RS, Sigurðsson O and Ferrigno JG (eds), Satellite Image Atlas of Glaciers of the World, the Glaciers of Iceland. Denver, U.S. Geological Survey Professional Paper 1386-A-K, 11.
Hjartarson, Á and Ólafsson, M (2005) Hveravellir. Könnun og kortlagning háhitasvæðis [Hveravellir. Exploration and mapping of a high-temperature area] (Rep. ÍSOR-2005/014). Iceland Geosurvey.
Hock, R and 14 others (2019) High mountain areas. In Pörtner H-O and 13 others (eds), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Intergovernmental Panel on Climate Change.
Jarosch, AH and Gudmundsson, MT (2007) Numerical studies of ice flow over subglacial geothermal heat sources at Grímsvötn, Iceland, using Full Stokes equations. Journal of Geophysical Research: Earth Surface 112, F02008. doi: 10.1029/2006JF000540
Jarosch, AH, Magnússon, E, Wirbel, A, Belart, JMC and Pálsson, F (2020) The geothermal output of the Katla caldera estimated using DEM differencing and 3D-iceflow modeling (Techn. Rep.). Reykjavík, Inst. Earth Sci., University of Iceland, 10 p. doi: 10.5281/zenodo.3784657
Jóhannesson, T and 7 others (2013) Ice-volume changes, bias estimation of mass-balance measurements and changes in subglacial lakes derived by lidar mapping of the surface of Icelandic glaciers. Annals of Glaciology 54(63), 6374. doi: 10.3189/2013-AoG63-A422
Jóhannesson, T, Raymond, C and Waddington, E (1989) Time-scale for adjustment of glaciers to changes in mass balance. Journal of Glaciology 35(121), 335369. doi: 10.3189/S002214300000928X
Jóhannesson, T, Sigurðsson, O and Hróðmarsson, HB (2014) Jökulhlaup úr Hofsjökli í ágúst 2013 [Jökulhlaup from Hofsjökull ice cap in August 2013] (Tech. Memo 2014-287/28.11.2014). Reykjavík, Icel. Meteorol. Office.
Jóhannesson, H and Sæmundsson, K (1998) Geological Map of Iceland, 1:500,000. Bedrock Geology. Reykjavík: Icelandic Institute of Natural History and Iceland Geodetic Survey.
Jónsson, SS (2016) Undan jökli: Súrefnis- og kolefnisbúskapur Jökulsárlóns á Breiðamerkursandi [From below the glacier: The oxigen and carbon budget of Jökulsárlón at Breiðamerkursandur] (Master's thesis). Faculty of Earth Sciences, University of Iceland, 68 p.
Kristjánsson, BR (2003) Jarðvatn á utanverðu Snæfellsnesi. Vatnafarskort og vatnsefnafræði [Groundwater flow in western Snæfellsnes. Hydrological map and water chemistry] (Master's thesis). Faculty of Earth Sciences, University of Iceland, 99 p.
Landl, B, Björnsson, H and Kuhn, M (2003) The energy balance of calved ice in Lake Jökulsarlón, Iceland. Arctic Antarctic and Alpine Research 35(4), 475481. doi: 10.1657/1523-0430(2003)035[0475:TEBOCI]2.0.CO;2
Loose, B and 5 others (2018) Evidence of an active volcanic heat source beneath the Pine Island Glacier. Nature Communications 9, 2431. doi: 10.1038/s41467-018-04421-3
Magnússon, E and 5 others (2012) Ice–volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne radar. Journal of Geophysical Research: Solid Earth 117, B07405. doi: 10.1029/2012JB009250
Magnússon, E and 7 others (2016) The subglacial topography of Drangajökull ice cap, NW-Iceland, deduced from dense RES-profiling. Jökull 66, 126.
Nawri, N, Pálmason, B, Petersen, GN, Björnsson, H and Þorsteinsson, S (2017) The ICRA Atmospheric Reanalysis Project for Iceland (Rep. 2017-005). Icel. Meteorol. Office.
Oddsson, B (2016) Heat Transfer in Volcanic Settings: Application to Lava–Ice Interaction and Geothermal Areas (PhD-thesis). University of Iceland, 110 p.
Oddsson, B and 5 others (2016) Subglacial lava propagation, ice melting and heat transfer during emplacement of an intermediate lava flow in the 2010 Eyjafjallajökull eruption. Bulletin of Volcanology 78, 48. doi: 10.1007/s00445-016-1041-4
Oerlemans, J (2013) A note on the water budget of temperate glaciers. The Cryosphere 7(5), 15571564. doi: 10.5194/tc-7-1557-2013
Pálsson, F (2016) Vatnajökull. Mass balance, meltwater drainage and surface velocity of the glacial year 2015–16 (Rep. 2016-129). Reykjavík, Inst. Earth Sci., University of Iceland, Landsvirkjun.
Pálsson, F (2018) Greinargerð til Vegagerðarinnar vegna styrks til verkefnisins: Afkoma og hreyfing Breiðamerkurjökuls og afrennsli leysingavatns til Jökulsárlóns á Breiðamerkursandi 2017 [Report to the Icelandic Road and Coastal Administration about the project: Mass balance and movement of the Breiðamerkurjökull outlet glacier and meltwater runoff to Jökulsárlón lagoon on Breiðamerkursandur 2017] (Techn. Rep.). Reykjavík, Inst. Earth Sci., University of Iceland.
PGC (2016) ArcticDEM Documentation and User Guidance. Version 1.1 – September 29, 2016. The Polar Geospatial Center – University of Minnesota & The Ohio State University. ( Documentation and User Guidance-Latest.pdf).
Porter, C and 28 others (2018) ArcticDEM, Harvard Dataverse, V1.1. doi:10.7910/DVN/OHHUKH
Pritchard, HD and 5 others (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502505. doi: 10.1038/nature10968
R Core Team (2019) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at
Reynolds, HI, Gudmundsson, MT, Högnadóttir, Th and Axelsson, G (2019) Changes in geothermal activity at Bárdarbunga, Iceland, following the 2014–15 caldera collapse, investigated using geothermal system modelling. Journal of Geophysical Research: Solid Earth 124(8), 81878204. doi: 10.1029/2018JB017290
Reynolds, HI, Gudmundsson, MT, Högnadóttir, T, Magnússon, E and Pálsson, F (2017) Subglacial volcanic activity above a lateral dyke path during the 2014–15 Bárdarbunga–Holuhraun rifting episode, Iceland. Bulletin of Volcanology 79, 38. doi: 10.1007/s00445-017-1122-z
Reynolds, HI, Gudmundsson, MT, Högnadóttir, T and Pálsson, F (2018) Thermal power of Grímsvötn, Iceland, from 1998 to 2016: quantifying the effects of volcanic activity and geothermal anomalies. Journal of Volcanology and Geothermal Research 358, 184193. doi: 10.1016/j.jvolgeores.2018.04.019
Schmidt, LS and 5 others (2018) Sensitivity of glacier runoff to winter snow thickness investigated for Vatnajökull ice cap, Iceland, using numerical models and observations. Atmosphere 9(11), 450. doi: 10.3390/atmos9110450
Schomacker, A (2010) Expansion of ice-marginal lakes at the Vatnajökull ice cap, Iceland, from 1999 to 2009. Geomorphology 119(3–4), 232236. doi: 10.1016/j.geomorph.2010.03.022
Schroeder, DM, Blankenship, DD, Young, DA and Quartini, E (2014) Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet. Proceedings of the National Academy of Sciences, USA 111(25), 90709072. doi: 10.1073/pnas.1405184111
Sigbjarnarson, G, Hannesdóttir, L and Erlendsson, B (1971) Mælingar á aðrennsli Jökulsár á Brú og Jökulsár á Fjöllum í ágúst 1971 [Measurements of discharge to Jökulsá á Brú and Jökulsá á Fjöllum in August 1971] (Techn. Rep. OST 8. 1971-11). Reykjavík, National Energy Authority.
Sigurðsson, F (1990) Groundwater from glacial areas in Iceland. Jökull 40, 119146.
Sigurðsson, F (2004) Vatnasvið Jökulsánna í Skagafirði. Grunnvatn og grunnvatnsaðstæður [Groundwater in Skagafjörður district] (Techn. Rep. OS-2014/14). Reykjavík, National Energy Authority.
Sigurðsson, F and Einarsson, K (1982) Forkönnun virkjana og rennslismælingar við Markarfljót og Hólmsá í Skaftártungu [Appraisal of hydroelectric power and discharge measurements in Markarfljót and Hólmsá in Skaftártunga] (Techn. Rep. OS-82085/VOD39). Reykjavík, National Energy Authority.
Sigurðsson, O, Williams, RS Jr and Víkingsson, S (2017) Jöklakort af Íslandi, 2. útgáfa [Map of the Glaciers of Iceland, 2nd edition]. Reykjavík, Icel. Meteorol. Office.
Smith-Johnsen, E, Schlegel, N-J, de Fleurian, B and Nisancioglu, KH (2020) Sensitivity of the Northeast Greenland Ice Stream to geothermal heat. Journal of Geophysical Research: Earth Surface 125(1), e2019JF005252. doi: 10.1029/2019JF005252
Thorsteinsson, T, Jóhannesson, T, Sigurðsson, O and Einarsson, B (2017) Afkomumælingar á Hofsjökli 1988–2017 [Mass balance of Hofsjökull 1988–2017] (Rep. 2017-016). Reykjavík, Icel. Meteorol. Office, 82 p.
WGMS (2019) Fluctuations of Glaciers Database. Zürich, Switzerland: World Glacier Monitoring Service. doi:10.5904/wgms-fog-2019-12
Zemp, M and 16 others (2013) Reanalysing glacier mass balance measurement series. The Cryosphere 7(4), 12271245. doi: 10.5194/tc-7-1227-2013


Non-surface mass balance of glaciers in Iceland

  • Tómas Jóhannesson (a1), Bolli Pálmason (a1), Árni Hjartarson (a2), Alexander H. Jarosch (a3), Eyjólfur Magnússon (a4), Joaquín M. C. Belart (a4) and Magnús Tumi Gudmundsson (a4)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.