Skip to main content Accessibility help
×
Home

Non-Basal Slip as a Major Deformation Process in the Creep of Polycrystalline Ice

  • W. J. McG. Tegart (a1)

Abstract

Published data on the creep of polycrystalline ice and crystals oriented for non-basal slip are discussed in terms of theories of prismatic slip in hexagonal metals. It is concluded that creep of polycrystalline ice near the melting point is controlled by non-basal slip but a decision on the exact mechanism of slip cannot be made on the basis of available data.

Résumé

On discute les données publiées sur le fluage de la glace polycristalline et des cristaux de glace orientés pour un glissement qui n’a pas lieu dans le plan de base, en comparaison avec le glissement prismatique (glissement sur les plans perpendiculaires aux plans de base) des métaux du système hexagonal. On conclue que le fluage de la glace polycristalline près du point de fusion est sous la dépendance d’un glissement qui ne se fait pas dans le plan de base, mais on ne peut pas décider du mécanisme exact de glissement sur la base des données disponibles.

Zusammenfassung

Veröffentlichte Werte über die Kriechvorgänge in polykristallinem Eis und in Kristallen mit Orientierungen für nicht-basales Gleiten werden nach dem Muster der prismatischen Gleitvorgänge in hexagonalen Metallen behandelt. Man kann schliessen, dass das Kriechen polykristallinen Eises nahe am Schmelzpunkt durch nicht-basales Gleiten bestimmt wird; doch genügen die verfügbaren Daten nicht für eine präzise Beschreibung des Gleitmechanismus.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Non-Basal Slip as a Major Deformation Process in the Creep of Polycrystalline Ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Non-Basal Slip as a Major Deformation Process in the Creep of Polycrystalline Ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Non-Basal Slip as a Major Deformation Process in the Creep of Polycrystalline Ice
      Available formats
      ×

Copyright

References

Hide All
Butkovich, T. R. Landauer, J. K. 1958. The flow law for ice. Union Géodésique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Symposium de Chamonix, 16–24 sept. 1958, p. 31827.
Eshelby, J. D. 1961. Dislocations in visco-elastic materials. Philosophical Magazine, Eighth Ser., Vol. 6, No. 68, p. 95363.
Friedel, J. 1959. Dislocation interactions and internal strains. (In Rassweiler, G. M. Grube, W. L., ed. Internal stresses and fatigue in metals. Amsterdam, Elsevier Publishing Co., p. 22062.)
Gilman, J. J. 1956. Plastic anisotropy of zinc monocrystals. Transactions of the American Institute of Mining and Metallurgical Engineers, Vol. 206, p. 132636.
Gilman, J. J. 1961. Prismatic glide in cadmium crystals. Transactions of the American Institute of Mining and Metallurgical Engineers. Vol. 221, p. 45657.
Glen, J. W. 1958. The mechanical properties of ice. I. The plastic properties of ice. Advances in Physics, Vol. 7, No. 26, p. 25465.
Glen, J. W. 1963. The rheology of ice. (In Kingery, W. D., ed. Ice and snow; properties, processes, and applications: proceedings of a conference held at the Massachusetts Institute of Technology, February 12–16, 1962. Cambridge, Mass., The M.I.T. Press, p. 37.)
Gold, L. W. 1963. Deformation mechanisms in ice. (In Kingery, W. D., ed. Ice and snow; properties, processes, and applications: proceedings of a conference held at the Massachusetts Institute of Technology, February 12–16, 1962. Cambridge, Mass., The M.I.T. Press, p. 827.)
Muguruma, J. 1963. Etch pits on prism planes of plastically deformed ice crystals. Journal of the Fondly of Science, Hokkaido University, Ser. 2, Vol. 6, No. 1, p. 1122.
Muguruma, J. Higashi, A. 1963. Observations of etch channels on the (0001) plane of ice crystals produced by non-basal glide. Journal of the Physical Society of Japan, Vol. 18, No. 9, p. 126169.
Schoeck, G. 1956. Moving dislocations and solute atoms. Physical Review, Second Ser., Vol. 102. No. 6, p. 145859.
Steinemann, S. 1954. Results or preliminary experiments on the plasticity of ice crystals. Journal of Glaciology, Vol. 2, No. 16, p. 40413.
Tegart, W. J. M. 1961. Activation energies for high temperature creep of polycrystalline magnesium. Acta Metallurgical, Vol. 9, No. 6, p. 61417.
Tegart, W. J. M. Sherby, O. D. 1958. Activation energies for high temperature creep of polycrystalline zinc. Philosophical Magazine, Eighth Ser., Vol. 3, No. 35, p. 128796.
Weertman, J. 1957[a]. Steady-state creep through dislocation climb. Journal of Applied Physics, Vol. 28, No. 3, p. 36264.
Weertman, J. 1957[b]. Steady-state creep of crystals. Journal of Applied Physics, Vol. 28, No. 10, p. 118589.
Weertman, J. 1963. The Eshelby-Schoeck viscous dislocation damping mechanism applied to the steady-state creep of ice. (In Kingery, W. D., ed. Ice and snow; properties, processes, and applications: proceedings of a conference held at the Massachusetts Institute of Technology, February 12–16, 1962. Cambridge, Mass., The M.I.T. Press, p. 2833.)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed