Skip to main content Accessibility help
×
Home

A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment

  • Frank Paul (a1) and Liss M. Andreassen (a2)

Abstract

Glaciers are widely recognized as key indicators of climate change, and their meltwater plays an important role in hydropower production in Norway. Since the last glacier inventory was compiled in northern Norway in the 1970s, marked fluctuations in glacier length and mass balance have been reported for individual glaciers, and the current overall glacier state is thus not well known. Within the framework of the Global Land Ice Measurements from Space (GLIMS) initiative, we have created a new inventory for 489 glaciers in the Svartisen region, northern Norway, using a Landsat Enhanced Thematic Mapper Plus (ETM+) satellite scene from 7 September 1999 and automated multispectral glacier mapping (thresholded band ratios). In addition, visual inspection and correction of the generated glacier outlines has been applied. Adverse snow conditions and uncertain drainage divides made glacier mapping challenging in some regions of the study site. Glacier outlines from 1968, as digitized from a topographic map, were used for a quantitative change assessment for a selection of 300 glaciers. The overall area change of this sample from 1968 to 1999 was close to zero, but with a strongly increasing scatter towards smaller glaciers, large area gains (>50%) for small glaciers (<1 km2), and an unexpected stronger relative area loss towards the wetter coast. The overall size changes are small (<1%) for the three largest ice masses in the study region (Vestisen, Østisen and Blåmannsisen).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment
      Available formats
      ×

Copyright

References

Hide All
Albert, T.H. 2002. Evaluation of remote sensing techniques for ice-area classification applied to the tropical Quelccaya ice cap, Peru. Polar Geogr, 26(3), 210226.
Andreassen, L.M., Kjøllmoen, B., Knudsen, N.T., Whalley, W.B. and Fjellanger, J.. 2000. Regional change of glaciers in northern Norway. NVE Rapp 1-2000.
Andreassen, L.M., Elvehøy, H. and Kjøllmoen, B.. 2002. Using aerial photography to study glacier changes in Norway. Ann. Glaciol, 34, 343348.
Andreassen, L.M., Elverøy, H., Kjøllmoen, B., Engeset, R.V. and Haakensen, N.. 2005. Glacier mass-balance and length variation in Norway. Ann. Glaciol, 42, 317325.
Andreassen, L.M., Paul, F., Kääb, A. and Hausberg, J.E.. 2008. Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere, 2(2), 131145.
Barry, R.G. 2006. The status of research on glaciers and global glacier recession: a review. Progr. Phys. Geogr, 30(3), 285306.
Citterio, M. and 6 others. 2007. The fluctuations of Italian glaciers during the last century: a contribution to knowledge about Alpine glacier changes. Geogr. Ann, 89(3), 167184.
DeBeer, C.M. and Sharp, M.J.. 2007. Recent changes in glacier area and volume within the southern Canadian Cordillera. Ann. Glaciol, 46, 215221.
Elvehøy, H., Jackson, M. and Andreassen, L.M.. 2009. The influence of drainage boundaries on specific mass-balance results: a case study of Engabreen, Norway. Ann. Glaciol, 50(50), 135140.
Engeset, R.V. and 6 others. 2000. Modelling of historic variations and future scenarios of the mass balance of Svartisen ice cap, northern Norway. Ann. Glaciol, 31, 97103.
Environmental Systems Research Institute (ESRI) 2004. ArcGIS 9.0. Redlands, CA, Environmental Systems Research Institute.
Evans, I.S. 2006. Local aspect asymmetry of mountain glaciation: a global survey of consistency of favoured directions for glacier numbers and altitudes. Geomorphology, 73(1–2), 166184.
Geist, T., Elvehøy, H., Jackson, M. and Stötter, J.. 2005. Investigations on intra-annual elevation changes using multi-temporal airborne laser scanning data: case study Engabreen, Norway. Ann. Glaciol, 42, 195201.
Granshaw, F.D. and Fountain, A.G.. 2006. Glacier change (1958–1998) in the North Cascades National Park Complex, Washington, USA. J. Glaciol, 52(177), 251256.
Haeberli, W. 2004. Glaciers and ice caps: historical background and strategies of worldwide monitoring. In Bamber, J.L. and Payne, A.J., eds. Mass balance of the cryosphere. Cambridge, Cambridge University Press, 559578.
Hall, D.K., Bayr, K.J., Schöner, W., Bindschadler, R.A. and Chien, J.Y.L.. 2003. Consideration of the errors inherent in mapping historical glacier positions in Austria from ground and space (1893–2001). Remote Sens. Environ, 86(4), 566577.
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P. and Paul, F.. 2002. Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can. Geotech. J, 39(2), 316330.
Jackson, M., Brown, I.A. and Elvehøy, H.. 2005. Velocity measurements on Engabreen, Norway. Ann. Glaciol, 42, 2934.
Kääb, A. and 6 others. 2003. Glacier monitoring from ASTER imagery: accuracy and application. EARSeL eProc, 2(1), 4353.
Kargel, J.S. and 16 others. 2005. Multispectral imaging contributions to global land ice measurements from space. Remote Sens. Environ, 99(1–2), 187219.
Kennett, M. 1990. Kartlegging av istykkelse og feltavgrensning pä Blämannsisen. NVE Rapp., 8/90.
Kennett, M., Rolstad, C., Elvehøy, H. and Ruud, E.. 1997. Calculation of drainage divides beneath the Svartisen ice-cap using GIS hydrologic tools. Nor. Geogr. Tidsskr, 51(1), 2328.
Khalsa, S.J.S., Dyurgerov, M.B., Khromova, T., Raup, B.H. and Barry, R.. 2004. Space-based mapping of glacier changes using ASTER and GIS tools: learning from Earth’s shapes and colors. IEEE Trans. Geosci. Remote Sens, 42(10), 21772183.
Khromova, T.E., Dyurgerov, M.B. and Barry, R.G.. 2003. Late-twentieth century changes in glacier extent in the Ak-shirak Range, Central Asia, determined from historical data and ASTER imagery. Geophys . Res. Lett, 30(16), 1863. (10.1029/2003GL017233.)
Kjøllmoen, B., ed. and 6 others. 2007. Glaciological investigations in Norway 2006. NVE Rapp., 1-2007.
Kuhn, M. 1995. The mass balance of very small glaciers. Z. Gletscherkd. Glazialgeol, 31(1–2), 171179.
Lemke, P. and 10 others. 2007. Observations: changes in snow, ice and frozen ground. In Solomon, S. and 7 others, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, 337383.
Li, B., Zhu, A.-X., Zhang, Y., Pei, T., Qin, C. and Zhou, C.. 2006. Glacier change of the past four decades in the middle Chinese Tien Shan. J. Glaciol, 52(178), 425432.
Manley, W.F. 2008. Geospatial inventory and analysis of glaciers: a case study for the eastern Alaska Range. In Williams, R.S. Jr. and Ferrigno, J.G., eds. Satellite Image Atlas of Glaciers of the World. Denver, CO, United States Geological Survey, K424K439. (USGS Professional Paper 1386-K.)
Marshall, G.J., Dowdeswell, J.A. and Rees, W.G.. 1994. The spatial and temporal effect of cloud cover on the acquisition of high quality Landsat imagery in the European Arctic sector. Remote Sens. Environ, 50(2), 149160.
Nesje, A., Lie, Ø. and Dahl, S.O.. 2000. Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? J. Quat. Sci, 15(6), 587601.
Østrem, G., Haakensen, N. and Melander, O.. 1973. Atlas over breer i Nord-Skandinavia. NVE Hydrol. Avd. Medd, 22.
Østrem, G., Selvig, K.D. and Tandberg, K.. 1988. Atlas over breer i Sør-Norge. NVE Hydrol. Avd. Medd, 61.
Paul, F. 2002. Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat TM and Austrian glacier inventory data. Int. J. Remote Sens., 23(4), 787799.
Paul, F. 2007. The new Swiss glacier inventory 2000 – application of remote sensing and GIS. Schr. Phys. Geogr., Univ. Zürich, 52.
Paul, F. and Kääb, A.. 2005. Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island. Ann. Glaciol., 42, 5966.
Paul, F. and Svoboda, F.. In press. A new glacier inventory on southern Baffin Island, Canada, from ASTER data: II. Data analysis, glacier change and applications. Ann. Glaciol, 50(53).
Paul, F., Kääb, A., Maisch, M., Kellenberger, T. and Haeberli, W.. 2002. The new remote-sensing-derived Swiss glacier inventory. I. Methods. Ann. Glaciol, 34, 355361.
Paul, F., Huggel, C., Kääb, A., Kellenberger, T. and Maisch, M.. 2003. Comparison of TM-derived glacier areas with higher resolution data sets. EARSeL eProc, 2(1), 1521.
Paul, F., Kääb, A., Maisch, M., Kellenberger, T. and Haeberli, W.. 2004. Rapid disintegration of Alpine glaciers observed with satellite data. Geophys. Res. Lett, 31(21), L21402. (10.1029/2004GL020816.)
Racoviteanu, A.E., Arnaud, Y., Williams, M.W. and Ordoñez, J.. 2008a. Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J. Glaciol, 54(186), 499510.
Racoviteanu, A.E., Williams, M.W. and Barry, R.G.. 2008b. Optical remote sensing of glacier characteristics: a review with focus on the Himalaya. Sensors, 8, 33553383.
Raup, B. and 11 others. 2007. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Comput. Geosci, 33(1), 104125.
Sætrang, A.C. 1988. Kartlegging av istykkelse på Vestre Svartisen 1986. NVE Hydrol. Avd. Oppdragsrapp 3-88.
Schuler, T.V. and 6 others. 2005. Distributed mass-balance and climate sensitivity modelling of Engabreen, Norway. Ann. Glaciol, 42, 395401.
Sidjak, R.W. and Wheate, R.D.. 1999. Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. Int. J. Remote Sens., 20(2), 273284.
Silverio, W. and Jaquet, J.M.. 2005. Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens. Environ, 95(3), 342350.
Svoboda, F. and Paul, F.. In press. A new glacier inventory on southern Baffin Island, Canada, from ASTER data: I. Applied methods, challenges and solutions. Ann. Glaciol, 50(53).
World Glacier Monitoring Service (WGMS). 1989. World glacier inventory: status 1988, ed. Haeberli, W., Bösch, H., Scherler, K., Østrem, G. and Wallén, C.C.. IAHS(ICSI)/UNEP/UNESCO, World Glacier Monitoring Service, Zürich.
WGMS. 2007. Glacier Mass Bulletin No. 9 (2004–2005), ed. Haeberli, W., Hoelzle, M. and Zemp, M.. ICSU(FAGS)/IUGG (IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zürich.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed