Skip to main content Accessibility help
×
Home

Modelling dynamics of glaciers in volcanic craters

  • Andrey N. Salamatin (a1), Yaroslav D. Murav’yev (a2), Takayuki Shiraiwa (a3) and Kenichi Matsuoka (a3)

Abstract

General equations of ice dynamics are re-examined, using scale analysis, in order to derive a simplified thermomechanically coupled model for ice flow and heat transfer in ice caps filling volcanic craters. Relatively large aspect ratios between crater depths and diameters, low surface temperatures and intense volcanic heating are the principal characteristics of such craters. The conventional boundary-layer (shallow-ice) approximation is revised to account for these conditions and, in addition, the variable density of the snow, firn and bubbly ice. Large crater depths and intense bottom melting result in low longitudinal balance velocities, controlled by both shear and longitudinal stresses, and hence small surface slopes. In such situations ice can be assumed to be linearly viscous. A flowline model of the glacier dynamics is developed using this assumption. Explicit predictive formulas for ice-particle trajectories and age–depth relations, thus obtained, suggest that the age of ice at the bottom of glaciers in volcanic craters on Kamchatka Peninsula, Russia, may reach hundreds or thousands of years. Ice cores from these glaciers represent unique climatic and volcanic archives.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modelling dynamics of glaciers in volcanic craters
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modelling dynamics of glaciers in volcanic craters
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modelling dynamics of glaciers in volcanic craters
      Available formats
      ×

Copyright

References

Hide All
Budd, W. F. and Jacka, T. H.. 1989. A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol., 16(2), 107144.
Budd, W. F. and Jenssen, D.. 1975. Numerical modelling of glacier systems. International Association of Hydrological Sciences Publication 104 (Symposium at Moscow 1971 — Snow and Ice), 257291.
Dahl-Jensen, D. 1989. Steady thermomechanical flow along two-dimensional flow lines in large grounded ice sheets. J. Geophys. Res., 94(B8), 10,35510,362.
Fowler, A. C. 1981. A theoretical treatment of the sliding of glaciers in the absence of cavitation. Philos. Trans. R. Soc. London, Ser. A, 298(1445), 637685.
Fowler, A. C. and Larson, D. A.. 1978. On the flow of polythermal glaciers. I: Model and preliminary analysis. Proc. R. Soc. London, Ser. A, 363(1713), 217242.
Grigoryan, S. S., Krass, M. S. and Shumskiy, P. A.. 1976. Mathematical model of a three-dimensional non-isothermal glacier. J. Glaciol., 17(77), 401417.
Hooke, R. LeB. 1981. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev. Geophys. Space Phys., 19(4), 664672.
Hooke, R. LeB. 1998. Principles of glacier mechanics. Upper Saddle River, NJ, Prentice Hall.
Hutter, K. 1993. Thermo-mechanically coupled ice-sheet response — cold, polythermal, temperate. J. Glaciol., 39(131), 6586.
Kobayashi, D., Murav’yev, Y. D., Kodama, Y. and Shiraiwa, T.. 1997. An outline of Russo-Japanese joint glacier research in Kamchatka, 1996. Bull. Glacier Res. 15, 1926.
Kodama, Y. and 6 others. 1996. Hydrometeorological and glaciological observations in the Koryto and Ushkovsky glaciers, Kamchatka, 1996. Low Temp. Sci., Ser. A 55, Data Report, 107136.
Lipenkov, V. Ya., Salamatin, A. N. and Duval, P.. 1997. Bubbly-ice densification in ice sheets: II. Applications. J. Glaciol., 43(145), 397407.
Lliboutry, L. 1981. A critical review of analytical approximate solutions for steady state velocities and temperatures in cold ice-sheets. Z. Gletscherkd. Glazialgeol., 15(2), 1979, 135148.
Matsuoka, K. and 7 others. 1999. Radio echo sounding the summit ice cap of Ushkovsky volcano, Kamchatka. In Naruse, R., ed. Cryospheric studies in Kamchatka II. Sapporo, Hokkaido University. Institute of Low Temperature Science, 20–24.
Murav’yev, Ya. D. and Salamatin, A. N.. 1989. Balans massy i termodinamicheskii regim lednika v kratere Ushkovskogo vulkana [Mass balance and thermal regime of a crater glacier at Ushkovskii volcano]. Vulkanologiya i Seysmologiya, 11(3), 8592. (Transl. in Volcanol. Seismol., 11(3), 1990, 411–423.)
Reeh, N. 1988. A flow-line model for calculating the surface profile and the velocity, strain-rate, and stress fields in an ice sheet. J. Glaciol., 34(116), 4654.
Robin, G. de Q 1955. Ice movement and temperature distribution in glaciers and ice sheets. J. Glaciol., 2(18), 523532.
Salamatin, A. N. 1991. Ice sheet modelling taking account of glacier ice compressibility. International Association of Hydrological Sciences Publication 208 (Symposium at St. Petersburg 1990 — Glaciers–Ocean–Atmosphere Interactions), 183192.
Salamatin, A. N. and Duval, P.. 1997. Creep flow and pressure relaxation in bubbly medium. Int. J. Solids Struct., 34(1), 6178.
Salamatin, A. N. and Mazo, A. B.. 1984. Issledovaniye obschey matematicheskoy modeli kupilovidnogo lednika metodami teorii podobiya [Similarity analysis of the general mathematical model of an ice-cap glacier]. Issled. Prikl. Mat., 10, 139–149. (Transl. in J. Sov. Math., 44(5), 1989, 664–672.)
Salamatin, A. N. and Murav’yev, Ya. D.. 1991. Nekotoriye resul’taty issledo-vaniya fizicheskih charakteristik lednikovoy tolschi na sklonah Klyuchevskogo vulkana [Some results of a study of the physical characteristics of the glacial stratum on the slopes of Klyuchevskoy volcano]. Vulkanologiya i Seysmologiya, 13(2), 8391. (Transl. in Volcanol. Seismol., 13(20), 1992, 230–240.)
Salamatin, A. N., Lipenkov, V. Ya. and Blinov, K. V.. 1995. Vosstanovleniye klimaticheskih izmenenii temperatury na poverhnosti Antarkticheskogo lednikovogo pokrova v proshlom po resultatam temperaturnih izmerenii v glubokih skvazhinah na stantsii Vostok [Reconstruction of past climatic variations of temperature on the Antarctic ice sheet surface from temperature measurements in deep bore-holes at Vostok station]. Mater. Glyatsiol. Issled. 79, 5964. (Transl. in Mater. Glyatsiol. Issled. 81, 1997, 141–146.)
Salamatin, A. N., Duval, P., Castelnau, O. and Malikova, D. R.. 1997a. Boundary layer approximation in anisotropic ice flow modelling. Mater. Glyatsiol. Issled. 83, 105111.
Salamatin, A. N., Lipenkov, V. Ya. and Duval, P.. 1997b. Bubbly-ice densification in ice sheets: I. Theory. J. Glaciol., 43(145), 387396.
Shiraiwa, T., Murav’yev, Ya. D. and Yamaguchi, S.. 1997. Stratigraphic features of firn as proxy climate signals at the summit ice cap of Ushkovsky volcano, Kamchatka, Russia. Arct. Alp. Res., 29(4), 414421.
Shiraiwa, T. and 7 others. 1999. Geophysical and paleoclimatic implications of the Ushkovsky ice cap in Kamchatka. In Naruse, R., ed. Cryospheric studies in Kamchatka II. Sapporo, Hokkaido University. Institute of Low Temperature Science, 8–19.
Sturm, M., Holmgren, J., König, M. and Morris, K.. 1997. The thermal conductivity of seasonal snow. J. Glaciol., 43(143), 2641.
Vostretsov, R. N., Dmitriyev, D. N., Putikov, O. F., Blinov, K. V. and Mitin, S. V.. 1984. Osnovnyye rezul’taty geofizicheskikh issledovaniy glubokikh skvazhhin i ledyanogo kerna v Vostochnoy Antarktide [The main results of geophysical studies of deep boreholes and the ice core in East Antarctica]. Mater. Glyatsiol. Issled. 51, 172178.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed