## References

Bagnold, RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London, Ser. A, 225(1160), 49–63

Bartelt, P and McArdell, B (2009) Granulometric investigations of snow avalanches. J. Glaciol., 55(193), 829–833 (doi: 10.3189/002214309790152384)

Bartelt, P, Salm, B and Gruber, U (1999) Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol., 45(150), 242–254 (doi:10.3189/002214399793377301)

Bartelt, P, Buser, O and Kern, M (2005) Dissipated work, stability and the internal flow structure of granular snow avalanches. J. Glaciol., 51(172), 125–138 (doi: 10.3189/172756505781829638)

Bartelt, P, Buser, O and Platzer, K (2006) Fluctuation–dissipation relations for granular snow avalanches. J. Glaciol., 52(179), 631–643 (doi: 10.3189/172756506781828476)

Bartelt, P, Bühler, O, Buser, O, Christen, M and Meier, L (2012a) Modeling mass-dependent flow regime transitions to predict the stopping and depositional behaviour of snow avalanches. J. Geophys. Res., 117, F01015 (doi: 10.1029/2010JF001957)

Bartelt, P, Glover, J, Feistl, T, Bühler, Y and Buser, O (2012b) Formation of levees and en-echelon shear planes during snow avalanche runout. J. Glaciol., 58(211), 980–992 (doi: 10.3189/2012JoG11J011)

Bozhinskiy, AN and Losev, KS (1998) The fundamentals of avalanche science. Eidg. Inst. Schnee Lawinenforsch. Mitt.

Buser, O and Bartelt, P (2009) Production and decay of random kinetic energy in granular snow avalanches. J. Glaciol., 55(189), 3–12 (doi: 10.3189/002214309788608859)

Buser, O and Bartelt, P (2011) Dispersive pressure and density variations in snow avalanches. J. Glaciol., 57(205), 857–860 (doi: 10.3189/002214311798043870)

Buser, O and Bartelt, P (2015) An energy based method to calculate streamwise density variations in snow avalanches. J. Glaciol., 61(227), 563–575 (doi: 10.3189/2015JoG14J054)

Christen, M, Kowalski, J and Bartelt, P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 1–2, 1–14 (doi: 10.1016/ j.coldregions.2010.04.005)

Dent, JD and Lang, TE (1983) A biviscous modified Bingham model of snow avalanche motion. Ann. Glaciol., 4, 42–46

Feistl, T and 6 others (2014) Observations and modelling of the braking effect of forests on small and medium avalanches. J. Glaciol., 60(219), 124–138 (doi: 10.3189/2014JoG13J055)

Fischer, J, Kowalski, J and Pudasaini, S (2012) Topographic curvature effects in applied avalanche modeling. Cold Reg. Sci. Technol., 74–75, 21–30 (doi: 10.1016/j.coldregions.2012.01.005)

Gauer, P, Issler, D, Lied, K, Kristensen, K and Sandersen, F (2008) On snow avalanche flow regimes: inferences from observations and measurements. Proceedings of the International Snow Science Workshop, ISSW 2008, Whistler, Canada International Snow Science Workshop

Harten, A, Lax, PD and Van Leer, B (1983) On upstream differencing and Godunov type schemes for hyperbolic conservation laws. SIAM Rev., 25, 35–61

Issler, D and Gauer, P (2008) Exploring the significance of the fluidized flow regime for avalanche hazard mapping. Ann. Glaciol., 49, 193–198 (doi: 10.3189/172756408787814997)

Jomelli, V and Bertran, P (2001) Wet snow avalanche deposits in the French Alps: structure and sedimentology. Geogr. Ann., 83A, 15–28 (doi: 10.1111/j.0435-3676.2001.00141.x)

Kern, M, Bartelt, P, Sovilla, B and Buser, O (2009) Measured shear rates in large dry and wet snow avalanches. J. Glaciol., 55(190), 327–338 (doi: 10.3189/002214309788608714)

Luca, I, Fang, C and Hutter, K (2004) A thermodynamic model of turbulent motions in a granular material. Contin. Mech. Thermodyn., 16(4), 363–390 (doi: 10.1007/s00161-003-0163-z)

Mitchell, J (1993) Fundamentals of soil behavior. John Wiley and Sons, New York

Miller, D, Adams, E, Schmidt, D and Brown, R (2003) Preliminary experimental evidence of heating at the running surface of avalanche snow. Cold Reg. Sci. Technol., 37(3), 421–427 (doi: 10.1016/S0165-232X(03)00081-8)

Naaim, M, Naaim-Bouvet, F and Faug, T (2003) Dry granular flow modelling including erosion and deposition. Surv. Geophys., 24, 569–585 (doi: 10.1023/B:GEOP.0000006083.47240.4c)

Naaim, M, Durand, Y, Eckert, N and Chambon, G (2013) Dense avalanche friction coefficients: influence of physical properties of snow. J. Glaciol., 59(216), 771–782 (doi: 10.3189/2013JoG12J205)

Nishimura, K (1990) Studies on the fluidized snow dynamics. Contrib. Inst. Low Temp. Sci., Ser. A, 37, 1–57

Nishimura, K and Maeno, N (1987) Experiments on snow avalanche dynamics. IAHS Publ.
162 (Symposium at Davos 1986 – *Avalanche Formation, Movement and Effects*), 395–404

Platzer, K, Bartelt, P and Kern, M (2007a) Measurements of dense snow avalanche basal shear to normal stress ratios (*S*/*N*). Geophys. Res. Lett., 34(7), L07501 (doi: 10.1029/2006GL028670)

Platzer, K, Bartelt, P and Jaedicke, C (2007b) Basal shear and normal stresses of dry and wet snow avalanches after a slope deviation. Cold Reg. Sci. Technol., 49, 11–25 (doi: 10.1016/j.coldregions.2007.04.003)

Potyondy, JG (1961) Skin friction between soils and construction materials. Geotechnique, 11, 339–353

Pudasaini, S and Hutter, K (2007) Avalanche dynamics of dense granular avalanches. Springer-Verlag, Berlin

Rainer, E and Fellin, W (2006) Druckabhängigkeit des Reibungswinkels zwischen Festkörper und Sand. Geotechnik, 29, 28–32

Rowlinson, J
(2002)
Cohesion. Cambridge University Press, Cambridge

Salm, B (1993) Flow, flow transition and runout distances of flowing avalanches. Ann. Glaciol., 18, 221–226

Tejchman, J and Wu, W (1995) Experimental and numerical study of sand–steel interfaces. Int. J. Num. Anal. Meth. Geomech., 19, 513–536 (doi: 10.1002/nag.1610190803)

Voytkovskiy, KF (1977) The mechanical properties of snow. [transl. Bartelt, CE] Nauka, Moscow

Wang, Y, Hutter, K and Pudasaini, S (2004) The Savage–Hutter theory: a system of partial differential equations for avalanche flows of snow, debris and mud. Z. Angew. Math. Mech., 84(8), 507–527 (doi: 10.1002/zamm.200310123)