Skip to main content Accessibility help
×
Home

Modelling albedo and specific balance of the Greenland ice sheet: calculations for the Søndre Strømfjord transect

  • Z. Zuo (a1) and J. Oerlemans (a1)

Abstract

Glacio-meteorological data obtained during the Greenland Ice Margin Experiment (GIMEX) investigations in West Greenland (the Søndre Strømfjord transect) have been used to test and calibrate energy-balance/mass-balance models for the ice/snow surface. The region is characterised by the development of a wide zone of low surface albedo in the course of the melting season. This zone was simulated in one of the energy-balance models by including the effect of surficial meltwater on albedo. Observed mass-balance and albedo data were used to constrain the models. Although all the models are capable of predicting the transect balance reasonably well, only the model with the meltwater albedo coupling, is able to reproduce the observed albedo pattern and mass-balance profile along the transect. By including the feedback between surficial meltwater and albedo in the model, the sensitivity of the specific balance to changes in air temperature is found to be greatest just below the equilibrium line (in contrast to what is generally found for valley glaciers). A 1 K warming of the air temperature would increase the mean ablation along the transect by 0.5 m w.e.year −1.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modelling albedo and specific balance of the Greenland ice sheet: calculations for the Søndre Strømfjord transect
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modelling albedo and specific balance of the Greenland ice sheet: calculations for the Søndre Strømfjord transect
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modelling albedo and specific balance of the Greenland ice sheet: calculations for the Søndre Strømfjord transect
      Available formats
      ×

Copyright

References

Hide All
Ambach., W. 1979. Zur Nettoeisablation In einem Höhenprofil am grönländischen Inlandeis. Inlandeis, Polarforshung., 49 (1) 55-62.
Ambach, W., Bhumthaler, M. and Kirchlerchner, P.. 1981. Applicationa of the gravity flow theory to the percolation of melt water through firn. J. Glaciol., 27 (95) 67-75.
Braithwaite, R.J. and Olesen, O. B. 1989. Calculation of glacior ablation from air temperature. West Greenland. Inxs Oerlemans, J., ed. Glacior fluctuations and climate change. Dordrecht. etc., Kluwer Academic Publishers. 219-233.
Braithwaite, R.J. and Olesen., O. B 1990. Increased ablation at the margin of the Greenland ice sheet under a greenhouse-effect climate, An. Glaciol., 14. 20-22.
Greuell., W. and Konzelmann, T. 1994. Numerical modelling of the energy balance and the englacial temperature of the Glreetland ice Sheet! calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.). Greenland and Planetary Change, 9 (1-2), 91-114.
Greuell., W. and Oerlemans, J.. 1986. Sensitivity studies with a mass balance model including temperature profile calculations inside the glacier. Z. Glescherkd., 22 (2). 101-124.
Henneken, E.A.c Bink., N.J. Vugfa, H.F., Cannemeijer, F. and Meesters, A.G.C.A., 1994. A ease study of the daily energy balance near the equilibrium line on the Greenland ice sheet. Global and Planetary Change, 9(1-2), 69-78.
Hoogendoorn., N. C. De massbalance van alpengletsjers. Utrecht, Universily of Utrecht Institut voor Meteorologic en Fysische Oceanografie. (Verslag 88-14.)
Hummel, J. R. and Reek, R. A.. 1979. A global surface albedo model. J. Appl. Meteorol., 18. 239-233.
Huybrechts, P., Letréguilly, A. and Reeh, N.. 1991. The Greenland ice sheet and greenhouse warming. Global and Planetary Change, 3 (4), 399-412.
Knap., W. Fl. and Oerlemans, J.. 1996. The surface albedo of the Greenland ice sheet: satellite-derived and in situ measurements in the Søndre Ströfjord aira during the 1991 melt season. J. Glaciol. 42 (141), 364-374.
Koelemeijer., R.. Oerlemans, J. and Tjemkes, S.. 1993. Surface reflectance of Hintereisferner, Austria Landsat 5 TM imagery. Ann. Glaciol., 17. 17-22.
Konzelmann, T., van de Wal., R.S.W. Greuell., J.W. Binianja., R. Henneken, E. A. C. and A. Abe-Ouchi., A. 1994. Parameterization of global and longwave incoming radiation for the Greenland ice sheet. Global and Planetary Change. 9 (1-2). 143-164.
Kraus, K.B. 1972. Atmospheare-ocean interaction Oxford, Clarendon Press.
Munro, D.S. 1989. Surface roughness and bulk heat transfer on a glacier: comparison with eddy correlation. J. Glaciol., 35 (121). 343-348.
Oerlemans., J. 1991. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling. Holocene. 1 (1). 40-49.
Oerlemans, J. 1992. Climate sensitivity of glaciers in southern Norway: appliraiion of an energy-balance model to Nigardsbreen. Hellstugubreen and Alfotbreen. J. Glaciol., 38 (129). 223-232.
Oerlemans, J. and Hoogendoorn, N.C.. 1989. Mass-balance gradients and climatic change. J. Glaciol., 35 (121). 399-405.
Oerlemans, J. and Vugts, H.F. 1993. A meteorological experimrni in the melting /one of the Greenland iee sheet. Bull. Am. Meteorol. Soc., 74 (3). 355-365.
Ohata, T. 1991. The effect of glacier wind on local climate. turbulent heat fluxes and ablation. ZGletscherkd., 25 (1), 1989. 49-68.
Ohmura, A. 1987. New temperature distribution maps for Greenland. Z. Gletscherkd. Glazialgeol., 23 (1), 1-45.
Ohmura, A. and Reeh, N.. 1991. New precipitation and accumulation maps for Greenland. J. Glaciol., 37 (125), 140-148.
Ohmura, A. and Wild, M.. 1995. A possible change in mass balance of Greenland and Antarctic ice sheets in the coming century. Gronlands Geologiske Undersogelse. Ser. Open File, 95/5. 59-77.
Ohmura., A. and 10 others. 1992. Energy and mass balance during melt season at the equilibrium line altitude. Paakitsoq. Gieenland ice sheet (69° 34′ 25.3′ North 49° 17′ 44.1″ West, 1155m.a.s.l.) Zürich. Eidgenössische Technische Hochschule. Depanmeut ol Geography. (ETH Greenland Expedition. Progress Repon 2: April 1991 to Oetober 1992)
Reeh, N. 1991. Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung, 59 (3) 1989. 113-128.
Wal, R.S.W. van de and Oerlemans, J.. 1994. An energy balance model for the Greenland ice sheet. Global and Planetary Change, 9(1-2), 115-131.
WaL, R. S. W. van de and 11 others. In press. Mass balance measurements in the Søndre Strømfjord area in the period 1990-1994. Z. Gletscherkd. Gletscherkd.Glazialgeol..
Walraven, R. 1978. Calculating the position of the Sun. Sol. Energy, 20. 393-397.
Warren, S. G. 1982. Optical properties of snow. Rev. Geophys. Space Phys., 20 (1), 67-89.
Weidick, A. 1984. Studies of glacier behaviour and glacier mass balance in Greenland — a review. Geogr. Ann., 66A (3), 183-195.

Modelling albedo and specific balance of the Greenland ice sheet: calculations for the Søndre Strømfjord transect

  • Z. Zuo (a1) and J. Oerlemans (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed