Skip to main content Accessibility help
×
×
Home

Modeling dynamic controls on ice streams: a Bayesian statistical approach

  • L.M. Berliner (a1), K. Jezek (a2), N. Cressie (a1), Y. Kim (a1), C.Q. Lam (a1) and C.J. Van Der Veen (a3)...

Abstract

Our main goal is to exemplify the study of ice-stream dynamics via Bayesian statistical analysis incorporating physical, though imperfectly known, models using data that are both incomplete and noisy. The physical–statistical models we propose account for these uncertainties in a coherent, hierarchical manner. The initial modeling assumption estimates basal shear stress as equal to driving stress, but subsequently includes a random corrector process to account for model error. The resulting stochastic equation is incorporated into a simple model for surface velocities. Use of Bayes’ theorem allows us to make inferences on all unknowns given basal elevation, surface elevation and surface velocity. The result is a posterior distribution of possible values that can be summarized in a number of ways. For example, the posterior mean of the stress field indicates average behavior at any location in the field, and the posterior standard deviations describe associated uncertainties. We analyze data from the ‘Northeast Greenland Ice Stream’ and illustrate how scientific conclusions may be drawn from our Bayesian analysis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modeling dynamic controls on ice streams: a Bayesian statistical approach
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modeling dynamic controls on ice streams: a Bayesian statistical approach
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modeling dynamic controls on ice streams: a Bayesian statistical approach
      Available formats
      ×

Copyright

References

Hide All
Arthern, R.J. and Hindmarsh, R.C.A.. 2003. Optimal estimation of changes in the mass of ice sheets. J. Geophys. Res., 108(F1), 6007. (10.1029/2003JF000021.)
Berger, J.O. 1985. Statistical decision theory and Bayesian analysis. New York, Springer-Verlag.
Berliner, L.M. 1996. Hierarchical Bayesian time series models. In Hanson, K. and Silver, R., eds. Maximum entropy and Bayesian methods. Dordrecht, etc., Kluwer Academic Publishers, 1522.
Berliner, L.M. 2003. Physical–statistical modelling in geophysics. J. Geophys. Res., 108(D24), 8776. (10.1029/2002JD002865.)
Berliner, L.M. and Wikle, C.K.. 2006. Approximate importance sampling Monte Carlo for data assimilation. Physica D, 230(1–2), 3749.
Berliner, L.M., Wikle, C.K. and Cressie, N.. 2000. Long-lead prediction of Pacific SSTs via Bayesian dynamic modelling. J. Climate, 13(13), 39533968.
Berliner, L.M., Milliff, R.F. and Wikle, C.K.. 2003. Bayesian hierarchical modelling of air–sea interaction. J. Geophys. Res., 108(C4), 3104. (10.1029/2002JC001413.)
Blatter, H. 1995. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138), 333344.
Bruce, A. and Gao, H.Y.. 1996. Applied wavelet analysis with S-PLUS. New York, Springer-Verlag.
DeGroot, M.H. 1970. Optimal statistical decisions. New York, McGraw-Hill.
Epstein, E.S. 1985. Statistical inference and prediction in climatology: a Bayesian approach. Boston, MA, American Meteorological Society.
Evensen, G. and van Leeuwen, P.J.. 2000. An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev., 128(6), 18521867.
Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B.. 2004. Bayesian data analysis. Second edition. Boca Raton, FL, Chapman and Hall/CRC.
Goldstein, R.M., Engelhardt, H., Kamb, B. and Frolich, R.M.. 1993. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science, 262(5139), 15251530.
Gudmundsson, G.H. 2006. Case study: estimating basal properties of glaciers from surface measurements. In Knight, P.G., ed. Glacier science and environmental change. Oxford, Blackwell, 415417.
Joughin, I., Fahnestock, M., MacAyeal, D., Bamber, J.L. and Gogineni, P.. 2001. Observation and analysis of ice flow in the largest Greenland ice stream. J. Geophys. Res., 106(D24), 34,02134,034.
Kamb, B. and Echelmeyer, K.A.. 1986. Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope. J. Glaciol., 32(111), 267284.
Lorenc, A.C. 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc., 112(474), 11771194.
MacAyeal, D.R. 1989. Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B, Antarctica. J. Geophys. Res., 94(B4), 40714087.
MacAyeal, D.R. 1993. A tutorial on the use of control methods in ice-sheet modeling. J. Glaciol., 39(131), 9198.
Meinhold, J. and Singpurwalla, N.. 1983. Understanding the Kalman filter. Am. Stat., 37(2), 123127.
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Robert, C.P. and Casella, G.. 1999. Monte Carlo statistical methods. New York, Springer-Verlag.
Tarantola, A. 1987. Inverse problem theory: methods for data fitting and model parameter estimation. New York, Elsevier.
Tebaldi, C., Smith, R.L., Nychka, D. and Mearns, L.O.. 2005. Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multi-model ensembles. J. Climate, 18(10), 15241540.
Van der Veen, C.J. 1999. Fundamentals of glacier dynamics. Rotterdam, A.A. Balkema.
Vidakovic, B. 1999. Statistical modeling by wavelets. New York, etc., Wiley.
Whillans, I.M. 1987. Force budget of ice sheets. In Van der Veen, C.J. and Oerlemans, J., eds. Dynamics of the West Antarctic ice sheet. Dordrecht, etc., D. Reidel Publishing Co., 1736.
Wikle, C.K. and Berliner, L.M.. 2006. A Bayesian tutorial for data assimilation. Physica D, 230(1–2), 116.
Wikle, C.K., Berliner, L.M. and Milliff, R.F.. 2003. Hierarchical Bayesian approach to boundary value problems with stochastic boundary conditions. Mon. Weather Rev., 131(6), 10511062.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed