Skip to main content Accessibility help

A model of viscoelastic ice-shelf flexure

  • Douglas R. MacAyeal (a1), Olga V. Sergienko (a2) and Alison F. Banwell (a3)


We develop a formal thin-plate treatment of the viscoelastic flexure of floating ice shelves as an initial step in treating various problems relevant to ice-shelf response to sudden changes of surface loads and applied bending moments (e.g. draining supraglacial lakes, iceberg calving, surface and basal crevassing). Our analysis is based on the assumption that total deformation is the sum of elastic and viscous (or power-law creep) deformations (i.e. akin to a Maxwell model of viscoelasticity, having a spring and dashpot in series). The treatment follows the assumptions of well-known thin-plate approximation, but is presented in a manner familiar to glaciologists and with Glen’s flow law. We present an analysis of the viscoelastic evolution of an ice shelf subject to a filling and draining supraglacial lake. This demonstration is motivated by the proposition that flexure in response to the filling/drainage of meltwater features on the Larsen B ice shelf, Antarctica, contributed to the fragmentation process that accompanied its collapse in 2002.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A model of viscoelastic ice-shelf flexure
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A model of viscoelastic ice-shelf flexure
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A model of viscoelastic ice-shelf flexure
      Available formats


Corresponding author

Correspondence: Douglas R. MacAyeal <>


Hide All
Albrecht, T and Levermann, A (2012) Fracture field for large-scale ice dynamics. J. Glaciol., 58(207), 165176 (doi: 10.3189/2012JoG11J191)
Banwell, AF and MacAyeal, DR (in press) Ice-shelf fracture due to viscoelastic-flexure stress induced by fill/drain cycles of supraglacial lakes. Antarct. Sci. (doi: 10.1017/50954102015000292)
Banwell, AF, MacAyeal, DR and Sergienko, OV (2013) Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett., 40, 58725876 (doi: 10.1002/2013GL057694)
Banwell, AF, Caballero, M, Arnold, NS, Glasser, NF, Cathles, LM and MacAyeal, DR (2014) Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study. Ann. Glaciol., 53(66), 18 (doi: 10.3189/2013AoG66A049)
Cheng, C-J and Zhang, N-H (1998) Variational principles on static–dynamic analysis of viscoelastic thin plates with applications. Int. J. Solids Struct., 35(33), 44914505
Chou, CH and Pan, J (1991) Constitutive laws for thin plates of power-law materials. Int. J. Solids Struct., 27(11), 13871400
Collins, IF and McCrae, IR (1985) Creep buckling of ice shelves and the formation of pressure rollers. J. Glaciol., 31(109), 242252
Das, SB and 6 others (2008) Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science, 320(5877), 778781 (doi: 10.1126/science.1153360)
Findley, WN, Lai, JS and Onaran, K (1976) Creep and relaxation of nonlinear viscoelastic materials. Appl. Math. Mech., 18, 1367 (doi: 10.1016/B978-0-7204-2369-3.50015-1)
Glasser, NF and Scambos, TA (2008) A structural glaciological analysis of the 2002 Larsen Ice Shelf collapse. J. Glaciol., 54(184), 316 (doi: 10.3189/002214308784409017)
Goldberg, DN, Schoof, C and Sergienko, OV (2014) Stick–slip motion of an Antarctic ice stream: the effects of viscoelasticity. J. Geophys. Res. Earth Surf., 119, 15641580 (doi: 10.1002/ 2014JF003132)
Gudmundsson, GH (2011) Ice-stream response to ocean tides and the form of the basal sliding law. Cryosphere, 5(1), 259270 (doi: 10.5194/tc-5-259-2011)
Hattersley-Smith, G (1960) The rolls on the Ellesmere Ice Shelf. Arctic, 10(1), 3244
Jellinek, HHG and Brill, R (1956) Viscoelastic properties of ice. J. Appl. Phys., 27(10), 11981209 (doi: 10.1063/1.1722231)
Kirchner, JF and Bentley, CR (1979) Seismic short-refraction studies on the Ross Ice Shelf, Antarctica. J. Glaciol., 24(90), 313319
LaBarbera, CH and MacAyeal, DR (2011) Traveling supraglacial lakes on George VI Ice Shelf, Antarctica. Geophys. Res. Lett., 38(24), L24501 (doi: 10.1029/2011GL049970)
Li, Z-D, Yang, TQ and Luo, W-B (2009) An improved model for bending of thin viscoelastic plate on elastic foundation. Natur. Sci., 1(2), 120123 (doi: 10.4236/ns.2009.12014)
MacAyeal, DR (1989) Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J. Geophys. Res., 94(B4), 40714088 (doi: 10.1029/ JB094iB04p04071)
MacAyeal, DR and Sergienko, OV (2013) Flexural dynamics of melting ice shelves. Ann. Glaciol., 54(63), 110 (doi: 10.3189/2013AoG63A256)
Mase, GE (1960) Transient response of linear viscoelastic plate. J. Appl. Mech., 27, 589590
Maxwell, JC (1867) On the dynamical theory of gasses. Philos. Trans. R. Soc. London, 157, 4988 (doi: 10.1098/rstl.1987.0004)
Reeh, N (1968) On the calving of ice from floating glaciers and ice shelves. J. Glaciol., 7(50), 215232
Reeh, N., Christensen, EL, Mayer, C and Olesen, OB (2003) Tidal bending of glaciers: a linear viscoelastic approach. Ann. Glaciol., 34, 8389
Ribe, NM (2003) Periodic folding of viscous sheets. Phys. Rev. E, 68, 036305 (doi: 10.1103/PhysRevE.68.036305)
Ribe, NM (2012) All bent out of shape: buckling of sheared fluid layers. J. Fluid Mech., 694, 14 (doi: 10.1017/jfm.2011.532)
Rosier, SHR, Gudmundsson, GH and Green, JAM (2014) Insights into ice stream dynamics through modeling their response to tidal forcing. Cryosphere Discuss., 8, 659689 (doi: 10.5194/tcd-8-659-2014)
Sayag, R and Worster, MG (2011) Elastic response of a grounded ice sheet coupled to a floating ice shelf. Phys. Rev. E, 84, 036111 (doi: 10.1103/PhysRevE.84.036111)
Sayag, R and Worster, MG (2013) Elastic dynamics and tidal migration of grounding lines modify subglacial lubrication and melting. Geophys. Res. Lett., 40, 58775881 (doi: 10.1002/ 2013GL057942)
Scambos, TA, Hulbe, C, Fahnestock, M and Bohlander, J (2000) The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46(154), 516530 (doi: 10.3189/ 172756500781833043)
Scambos, T and 7 others (2009) Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett., 280(1–4), 5160 (doi: 10.1016/j.epsl.2008.12.027)
Schoof, C (2011) Marine ice sheet dynamics. Part 2. A Stokes flow contact problem. J. Fluid Mech., 679, 122155 (doi: 10.1017/jfm.2011.129)
Sergienko, OV (2005) Surface melting of ice shelves and icebergs. (PhD thesis, University of Chicago)
Sergienko, OV (2010) Elastic response of floating glacier ice to impact of long-period ocean waves. J. Geophys. Res., 115(F4), F04028 (doi: 10.1029/2010JF001721)
Sergienko, OV (2013) Normal modes of a coupled ice-shelf/sub-ice-shelf cavity system. J. Glaciol., 59(213), 7680 (doi: 10.3189/2013JoG12J096)
Slim, A, Teichman, J and Mahadevan, L (2012) Buckling of a thin-layer Couette flow. J. Fluid Mech., 694, 528 (doi: 10.1017/jfm.2011.437)
Sokolovsky, VV (1969) Teoriya plastichnosti [Theory of plasticity]. Vishaya Shkola, Moscow
Tedesco, M, Willis, I, Hoffman, M, Banwell, AF, Alexander, P and Arnold, N (2013) Ice dynamic response to two modes of surface lake drainage on the Greenland Ice Sheet. Environ. Res. Lett., 8, 034007 (doi: 10.1088/1748-9326/8/3/034007)
Timoshenko, S and Woinowsky-Krieger, S (1959) Theory of plates and shells. McGraw-Hill Book Co., New York
Tsai, VC and Gudmundsson, GH (2015) An improved model for tidally modulated grounding-line migration. J. Glaciol., 61(226), 205215 (doi: 10.3189/2015JoG14)
Van der Veen, CJ (1998) Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Reg. Sci. Technol., 27, 3147 (doi: 10.1016/S0165-232 X(97)00022-0)
Vrabie, M, Ionuţ-Ovidiu, T and Jerca, ŞT (2009) Differential equation of a visco-elastic beam subjected to bending. Bul. Inst. Politeh. IASI, 52(56), 2128
Wineman, A and Kolberg, R (1995) Mechanical response of beams of a nonlinear viscoelastic material. Polymer Eng. Sci., 35(4), 345350


Related content

Powered by UNSILO

A model of viscoelastic ice-shelf flexure

  • Douglas R. MacAyeal (a1), Olga V. Sergienko (a2) and Alison F. Banwell (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.