Skip to main content Accessibility help
×
Home

Mass Transfer Along an Ice Surface Observed by a Groove Relaxation Technique

  • K. Itagaki (a1) and T. M. Tobin (a1)

Abstract

The mass transfer on an ice surface was measured using a groove decay technique on (0001) plane and <1010> direction at −10° C. The evaporation–condensation and viscous flow terms in Mullins’ theory were deduced from the change of decay constant as a function of groove wavelength between 16 and 80 μm. A viscous flow term contributes the most to groove decay while an evaporation–condensation term contributes up to 31.5% of the mass transfer for the shortest wavelength measured and other terms were found to be negligible. Large discrepancies between the decay constants obtained from the measurements and constants calculated from theory indicate that other mechanisms not considered in Mullins’ theory may be responsible for the groove decay.

Résumé

Les transferts de masse sur une surface de glace ont été mesurés en utilisant une technique de la décroissance des sillons le long du plan (0001) et de la direction <1010> à −10° C. Les termes d’évaporation–condensation et d’écoulement visqueux dans la théorie de Mullins ont été déduits des variations de la constante de décroissance en fonction de la longeur d’onde des sillons entre 16 et 80 μm. C’est l’écoulement visqueux qui contribue le plus à la decroissance des sillons, tandis que l’évaporation–condensation n’y participe que pour 31,5% des transferts de masse mesurés pour la plus courte longeur d’onde, et que les autres termes apparaissent négligeables. D’importantes descordances entre les constantes de décroissance obtenues à partir des mesures et les constantes calculées par la théorie prouvent que d’autres mécanismes, non pris en compte dans la théorie de Mullins, peuvent être responsables de la décroissance des sillons.

Zusammenfassung

Der Massentransport auf einer Eisoberfläche wurde aus dem Verfall der Rillen in der (0001)-Fläche und <1010>-Richtung bei −10° C gemessen. Die Ausdrücke für Verdunstung–Kondensation und viskoses Fliessens in Mullins’ Theorie wurden aus den Änderungen der Verfallskonstanten als Funktion der Wellenlänge der Rillen zwischen 16 und 80 μm hergeleitet. Viskoses Fliessen verursacht den Hauptanteil der Rillenauflösung, während die Verdunstung und Kondensation bis zu 31,5% des Massentransports für die kürzeste der gemessenen Wellenlängen ausmacht. Weitere Einflüsse stellten sich als vernachlässigbar heraus. Grosse Abweichungen zwischen den Verfallskonstanten, die sich aus den Beobachtungen ergaben, und den aus der Theorie errechneten deuten darauf hin, dass noch andere Mechanismen, die in Mullins’ Theorie nicht berücksichtigt sind. den Rillen-Verfall mitverursachen.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mass Transfer Along an Ice Surface Observed by a Groove Relaxation Technique
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mass Transfer Along an Ice Surface Observed by a Groove Relaxation Technique
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mass Transfer Along an Ice Surface Observed by a Groove Relaxation Technique
      Available formats
      ×

Copyright

References

Hide All
Burton, W. K., and others. 1951. The growth of crystals and the equilibrium structure of their surfaces, by W. K. Burton, N. Cabrera and F. C. Frank. Philosophical Transactions of the Royal Society, Vol. 243, No. 866, p. 299358.
Cabrera, N., and Levine, M. M. 1956. On the dislocation theory of evaporation of crystals. Philosophical Magazine. Eighth Ser., Vol. 1, No. 5, p. 45058.
Faraday, M. 1860. Note on regelation. Proceedings of the Royal Society, Vol. 10, p. 44050.
Frank, F. C. 1949. The influence of dislocations on crystal growth. Discussions of the Faraday Society, No. 5, p. 4854.
Fukuda, A., and Higashi, A. 1969. X-ray diffraction topographic studies of dislocations in natural large ice single crystals. Japanese Journal of Applied Physics, Vol. 8, No. 8, p. 99399.
Hobbs, P. V., and Mason, B. J. 1964. The sintering and adhesion of ice. Philosophical Magazine, Eighth Ser., Vol. 9, No. 98, p. 18197.
Itagaki, K. 1966. Self-diffusion in ice single crystals. U.S. Cold Regions Research and Engineering Laboratory. Reserch Report 178.
Itagaki, K. 1967[a]. Particle migration on ice surfaces. (In Ōura, H., ed. Physics of snow and ice: international conference on low temperature science. … 1966. … Proceedings, Vol. 1, Pt. 1. [Sapporo], Institute of Low Temperature Science, Hokkaido University, p. 23346.)
Itagaki, K. 1967[b]. Self-diffusion in single-crystal ice. Journal of the Physical Society of Japan, Vol. 22, No. 2, p. 4273
Itagaki, K. 1967[c]. Some surface phenomena of ice. Journal of Colloid and Interface Science, Vol. 25, No. 2, p. 21827.
Jellinek, H. H. G. 1967. Liquid-like (transition) layer on ice. Journal of Colloid and Interface Science, Vol. 25, No. 2, p. 192205.
Ketcham, W. M., and Hobbs, P. V. 1969. An experimental determination of the surface energies of ice. Philosophical Magazine, Eighth Ser., Vol. 19, No. 162, p. 116173.
Lester, J. E., and Somorjai, G. A. 1968. The effect of dislocations on the vaporization rate of NaCl single crystals. Applied Physics Letters, Vol. 12, No. 6, p. 21617.
Muguruma, J., and Higashi, A. 1963. Observation of etch channels on the (0001) plane of ice crystal produced by nonbasal glide. Journal of the Physical Society of Japan, Vol. 18, No. 9, p. 126169.
Mullins, W. W. 1959. Flattening of a nearly plane solid surface due to capillarity. Journal of Applied Physics, Vol. 30, No. 1, p. 7783.
Nakaya, U., and Matsumoto, A. 1953. Evidence of the existence of a liquid like film on ice surfaces. U.S. Snow, Ice and Permafrost Research Establishment. Research Paper 4.
Tobin, T. M., and Itagaki, K. 1970. Instruments and methods. A technique for producing strain-free flatsurfaces on single crystals of ice. Journal of Glaciology, Vol. 9, No. 57, p. 38590.
Tobin, T. M., and Itagaki, K. 1971. A hot-wire grooving engine to produce periodic grooves on an ice surface. Journal of Glaciology, Vol. 10, No. 58, p. 13942.
Weyl, W. A. 1951. Surface structure of water and some of its physical and chemical manifestations. Journal of Colloid Science, Vol. 6, No. 5, p. 389405.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed