Skip to main content Accessibility help
×
Home

Mapping tide-water glacier dynamics in East Greenland using Landsat data

  • John L. Dwyer (a1)

Abstract

Landsat multispectral scanner and thematic mapper images were co-registered For the Kangerdlugssuaq Fjord region in East Greenland and were used to map glacier drainage-basin areas, changes in the positions of tide-water glacier termini and to estimate surface velocities of the larger tide-water glaciers. Statistics were compiled to document distance and area changes to glacier termini. The methodologies developed in this study are broadly applicable to the investigation of tide-water glaciers in other areas. The number of images available for consecutive years and the accuracy with which images are co-registered are key factors that influence the degree to which regional glacier dynamics can be characterized using remotely sensed data.

Three domains of glacier state were interpreted: net increase in terminus area in the southern part of the study area, net loss of terminus area for glaciers in upper Kangerdlugssuaq Fjord and a slight loss of glacier terminus area northward from Ryberg Fjord. Local increases in the concentrations of drifting icebergs in the fjords coincide with the observed extension of glacier termini positions Ice-surface velocity estimates were derived for several glaciers using automated image cross-correlation techniques The velocity determined for Kangerdlugssuaq Gletscher is approximately 5.0 km a−1 and that for Kong Christian IV Gletscher is 0.9 km a−1. The continuous presence of icebergs and brash ice in front of these glaciers indicates sustained rates of ice-front calving.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mapping tide-water glacier dynamics in East Greenland using Landsat data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mapping tide-water glacier dynamics in East Greenland using Landsat data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mapping tide-water glacier dynamics in East Greenland using Landsat data
      Available formats
      ×

Copyright

References

Hide All
Andrews, J.T., Milliman, J.D., Jennings, A. E., Rynes, N. and Dwyer, J.L. 1994. Sediment thicknesses and Holocene glacial marine sedimentation rates in three East Greenland fjords (ca.68°N). J. Geol., 102 (6), 669683.
Bernstein, R. 1983. Image geometry and rectification. In Simonentt, D. S. and Ulaby, F. T., eds, Manual of remote sensing. Vol. 1. Theory, instruments, techniques. Second edition. Falls Church, VA, American Society of Photogrammetry, 873922.
Bindschadler, R. A. 1984. Jacobshavns glacier drainage basin: a balance assessment, J. Geophys. Res., 89 (C2), 20662072.
Bindschadler, R. A. and Scambos, T. A. 1991. Satellite-image-derived velocity field of an Antarctic ice stream. Science, 252 (5003), 242246.
Braithwaite, R.J. 1980. Regional modelling of ablation in West Greenland. GGU Rapport 98.
Braithwaite, R.J. and Olesen, O.B. 1990. Increased ablation at the margin of the Greenland ice sheet under a greenhouse-effect climate. Ann. Glaciol., 14, 2022.
Brooks, C.K. 1979. Geomorphological observations at Kangerdlugssuaq, East Greenland. Medd. Grønl. Geosci. 1.
Clarke, G.K.C. 1987. Fast glacier flow: ice streams, surging and tidewater glaciers. J. Geophys. Res., 92 (B9), 88358841.
Dowdeswell, J.A. 1986. Remote sensing of ire cap outlet glacier fluctuations on Nordaustlandet, Svalbard. Polar Res., 4 (1), 2532.
Dowdeswell, J.A. and Collin, R. L. 1990. Fast-flowing outlet glaciers on Svalbard ice caps. Geology, 18 (8), 778781.
Dwyer, J.L. 1993. Monitoring characteristics of glaciation in the Kangerdlugssuaq Fjord region, East Greenland, using Landsat data. (M.Sc. thesis, University of Colorado.)
Echelmeyer, K. and Harrison, W.D. 1990. Jakobshavns Isbræ, West Greenland: seasonal variations in velocity — or lack thereof. J. Glaciol., 36 (122), 8288.
Emery, W.J., Fowler, C. W., Hawkins, J. and Preller, R.H. 1991. Fram Strait satellite image-derived ice motions. J. Geophys. Res., 96 (C3), 47514768.
Fahnestock, M., Bindschadler, R., Kwok, R. and Jezek, Κ. 1993. Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science, 262 (5139), 15301534.
Gotdstein, R. M., Engelhardt, H., Β. Kamb and Frolich, R. M. 1993. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science, 262 (5139), 15251530.
Guindon, B. 1985. Automated control point acquisition in radar-optical image registration Can. J. Remote Sensing, 11 (1), 103112.
Hall, D. K., Ormsby, J.P., Bindschadler, R. A. and Siddalingaiah, H. 1987. Characterization of snow and ice reflectance zones an glaciers using Landsat Thematic Mapper data. Ann. Glaciol., 9, 104108.
Hall, D. K., Chang, A. T. C. and Siddalingaiah, H. 1988. Reflectances of glaciers as calculated using Landsat-5 Thematic Mapper data. Remote Sensing Environ., 25 (3), 311321.
Hannah, M.J. 1989. A system for digital stereo image matching, Photogramm. Eng. Remote Sensing, 55 (12), 17651770.
Hughes, T. 1986. The Jakobshavns effect. Geophys. Res. Lett., 13 (1), 4648.
Lucchitta, B. K. and Ferguson, H.M. 1986. Antarctica: measuring glacier velocity from satellite images. Science, 234 (4780), 11051108.
Lucchitta, B.K., Mullins, K.F., Allison, A L. and Ferrigno, J.G. 1993. Antarctic glacier-tongue velocities from Landsat images: first results. Ann. Glaciol., 17, 356366.
Lucchitta, Β.Κ., Mullins, Κ. F. Smith, C.E. and Ferrigno, J.Q. 1994. Velocities of the Smith Glacier ice tongue and Dotson Ice Shelf, Walgreen Coast, Marie Byrd Land, West Antarctica, Ann. Glaciol., 20, 101109.
Lucchitta, B.K., Rosanova, C.E. and Mullins, K. F. 1995. Velocities of Pine Island Glacier, West Antarctica, from ERS-1 SAR images. Ann. Glaciol., 21, 277283.
Orheim, O. and Lucchitta, B.K. 1987. Snow and ice studies by Thematic Mapper and multispectral scanner Landsat images. Ann. Glaciol., 9, 109118.
Raney, R.K. 1993. Probing in sheets with imaging radar. Science, 262 (5139), 15211522.
Reeh, N. 1985. Greenland ice sheet mass balance and sea-level change. In United States Department of Energy. Glaciers, Ice Sheets, and Sea Levels: Effect of a CO2-induced Climatic Change. Report of a Workshop held in Seattle, Washington, September 13–15, 1984. Washington, DC, National Academy Press, 155171.
Reeh, N. 1989. Dynamic and climatic history of the Greenland ice sheet. In Fulton, R.J., ed. Quaternary geology of Canada and Greenland, Ottawa, Geological Society of America, 794822. (Geology of North America, Vol. K-1.)
Rignot, E., Kwok, R., Curlander, J. and Pang, S. 1991. Automated multisensor registration - requirements and techniques. Photogramm. Eng. Remote Sensing, 57 (8), 10291038.
Scambos, T.A., Dutkiewicz, M.J., Wilson, J. C. and Bindschadler, R.A. 1992. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sensing Environ., 42 (3), 177186.
United States Geological Survey. 1984. Landsat 4 data users’ handbook. Alexandria, VA, U.S. Geological Survey.
Warren, C.R. 1991. Terminal environment, topographic control and fluctuations of West Greenland glaciers. Boreas, 20 (1), 115.
Warren, C.R. 1992. Iceberg calving and the glacioclimatic record. Prog. Phys. Geogr., 16 (3), 253282.
Warren, C.R. and Glasser, N.F. 1992. Contrasting response of south Greenland glaciers to recent climatic change. Arct. Alp. Res., 24 (2), 124132.
Warrick, R. and Oerlernans, J. 1990. Sea level rise. In Houghton, J.T., Jenkins, G.J. and Ephraums, J.J., eds. Climate change — the IPCC scientific assessment. Cambridge, Cambridge University Press, 257281.
Weidick, A. 1995. Greenland, with a section on Landsat images of Greenland by Richard S. Williams, Jr. and Jane G. Ferrigno. U.S. Geol. Surv. Prof. Pap. 1386-C.
Williams, R.S., Jr. 1987. Satellite remote sensing of Vatnajökull, Iceland. Ann. Glaciol., 9, 127135.
Williams, R.S., Jr. Hall, D.K. and Benson, C.S. 1991. Analysis of glacier facies using satellite techniques. J. Glaciol., 37 (125), 120128.

Related content

Powered by UNSILO

Mapping tide-water glacier dynamics in East Greenland using Landsat data

  • John L. Dwyer (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.