Skip to main content Accessibility help
×
Home

Linear stability analysis of an ice sheet interacting with the ocean

  • Alexander V. Wilchinsky (a1) (a2)

Abstract

A linear stability analysis of a two-dimensional flow of an isothermal ice sheet interacting with the ocean is considered. The set of boundary conditions determining motion of the grounding line is adopted to describe hydrostatic equilibrium of ice in water and a cubic dependence of the mass flow rate on ice thickness. The numerical analysis shows that the zero-growth (zero-eigenvalue) mode found for linear bed slopes and constant accumulation rates indeed determines neutral equilibrium and separates stable and unstable solutions. It is also argued that, provided some conditions of regularity of the solutions are satisfied, finding only one stable and one unstable solution would be enough to ascertain that the condition determining a zero eigenvalue also determines neutral equilibrium. This supports the intuitive understanding of ice-sheet stability: ice sheets are stable on bed slopes that ensure that the mass flow rate at the grounding line increases faster than the cumulative ice accumulation rate at the surface when the grounding line is perturbed; and ice sheets are unstable otherwise.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Linear stability analysis of an ice sheet interacting with the ocean
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Linear stability analysis of an ice sheet interacting with the ocean
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Linear stability analysis of an ice sheet interacting with the ocean
      Available formats
      ×

Copyright

References

Hide All
Chugunov, V.A. and Wilchinsky, A.V.. 1996. Modelling of a marine glacier and ice-sheet-ice-shelf transition zone based on asymptotic analysis. Ann. Glaciol., 23, 5967.
Fontelos, M.A. and Muñoz, A.I.. 2007. A free boundary problem in glaciology: the motion of grounding lines. Interface Free Bound., 9(1), 6793.
Fowler, A.C. and Larson, D.A.. 1978. On the flow of polythermal glaciers. I: Model and preliminary analysis. Proc. R. Soc. London, Ser. A, 363(1713), 217242.
Glen, J.W. 1955. The creep of polycrystalline ice. Proc. R. Soc. London, Ser. A, 228(1175), 519538.
Hindmarsh, R.C.A. 1996. Stability of ice rises and uncoupled marine ice sheets. Ann. Glaciol., 23, 105115.
Hutter, K. 1983. Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. Dordrecht, etc., D. Reidel Publishing Co./Tokyo, Terra Scientific Publishing Co.
Lipenkov, V.Y., Salamatin, A.N. and Duval, P.. 1997. Bubbly-ice densification in ice sheets: II. Applications. J. Glaciol., 43(145), 397407.
Morland, L.W. and Johnson, I.R.. 1980. Steady motion of ice sheets. J. Glaciol., 25(92), 229246.
Muszynski, I. and Birchfield, G.E.. 1987. A coupled marine ice-stream–ice-shelf model. J. Glaciol., 33(113), 315.
Nowicki, S.M.J. and Wingham, D.J.. 2008. Conditions for a steady ice sheet–ice shelf junction. Earth Planet. Sci. Lett., 265(1–2), 246255.
Nye, J.F. 1959. The motion of ice sheets and glaciers. J. Glaciol., 3(26), 493507.
Oppenheimer, M. 1998. Global warming and the stability of the West Antarctic ice sheet. Nature, 393(6683), 325332.
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Rémy, F., Ritz, C. and Brisset, L.. 1996. Ice-sheet flow features and rheological parameters derived from precise altimetric topography. Ann. Glaciol., 23, 277283.
Salamatin, A.N. 1989. Motion of the edge of an ice sheet. J. Math. Sci., 44(5), 672675.
Salamatin, A.N. and Mazo, A.B.. 1989. Similarity analysis of the general mathematical model of an icecap glacier. J. Math. Sci., 44(5), 664672.
Salamatin, A.N., Lipenkov, V.Y. and Duval, P.. 1997. Bubbly-ice densification in ice sheets: I. Theory. J. Glaciol., 43(145), 387396.
Schoof, C. 2007a. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res., 112(F3), F03S28. (10.1029/2006JF000664.)
Schoof, C. 2007b. Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech., 573, 2755.
Thomas, R.H. and Bentley, C.R.. 1978. A model for Holocene retreat of the West Antarctic ice sheet. Quat. Res., 10(2), 150170.
Vaughan, D.G. and Spouge, J.R.. 2002. Risk estimation of collapse of the West Antarctic ice sheet. Climatic Change, 52(1–2), 6591.
Vialov, S.S. 1958. Regularities of ice deformation (some results of laboratory researches). IASH Publ. 47 (Symposium at Chamonix 1958 – Physics of the Movement of the Ice), 383391.
Weertman, J. 1974. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol., 13(67), 311.
Wilchinsky, A.V. 1997. Matematicheskoe modelirovanie dinamiki morskih lednikov i ih osobyh zon [Mathematical modelling of marine ice sheets and their singular zones]. (PhD thesis, Kazan State University.) [In Russian.]
Wilchinsky, A.V. 2001. Studying ice sheet stability using the method of separation of variables. Geophys. Astrophys. Fluid Dyn., 94(1–2), 1545.
Wilchinsky, A.V. 2007. The effect of bottom boundary conditions in the ice-sheet to ice-shelf transition zone problem. J. Glaciol., 53(182), 363367.
Wilchinsky, A.V. and Chugunov, V.A.. 2000. Ice-stream–ice-shelf transition: theoretical analysis of two-dimensional flow. Ann. Glaciol., 30, 153162.
Wilchinsky, A.V. and Chugunov, V.A.. 2001. Modelling ice flow in various glacier zones. J. Appl. Math. Mech., 65(3), 479493.
Wilchinsky, A.V. and Feltham, D.L.. 2004. Stability of an ice sheet on an elastic bed. Eur. J. Mech. B – Fluids, 23(5), 681694.
Wilchinsky, A.V., Chugunov, V.A., Glazovskiy, A.F. and Macheret, Yu.Ya.. 1998. Modelirovaniya techeniya vyvodnykh lednikov Zemli Vil’cheka, Zemlya Frantsa-Iosifa [Modelling of the flow of outlet glaciers on Vilchek Land, Franz Josef Land]. Mater. Glyatsiol. Issled. 85, 178186. [In Russian with English summary.]

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed