Skip to main content Accessibility help
×
Home

Intra- and inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance

  • Pablo Sánchez-Gámez (a1), Francisco J. Navarro (a1), Toby J. Benham (a2), Andrey F. Glazovsky (a3), Robin P. Bassford (a4) and Julian A. Dowdeswell (a2)...

Abstract

We determined ice velocities for the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, during November 2016–November 2017, by feature-tracking 54 pairs of Sentinel-1 synthetic-aperture radar images. Seasonal velocity variations with amplitudes up to 10% of the yearly-averaged velocity were observed. Shorter-term (<15 d) intra-annual velocity variations had average and maximum deviations from the annual mean of up to 16 and 32%, respectively. This indicates the errors that could be incurred if ice discharge values determined from a single pair of images were extrapolated to the whole year. Average ice discharge for 2016–2017 was 1.93 ± 0.12 Gt a−1. The difference from an estimate of ~ 1.4 Gt a−1 for 2003–2009 was attributed to the initiation of ice stream flow in Basin BC. The total geodetic mass balance over 2012–2016 was − 1.72 ± 0.67 Gt a−1 (− 0.31 ± 0.12 m w.e. a−1). The climatic mass balance was not significantly different from zero, at 0.21 ± 0.68 Gt a−1 (0.04 ± 0.12 m w.e. a−1), and has remained near zero at decadal-scale for the last four decades. Therefore, the total mass balance has been controlled largely by variations in ice discharge, whose long-term changes do not appear to have responded to environmental changes but to the intrinsic characteristics of the ice cap governing tidewater glacier dynamics.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Intra- and inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Intra- and inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Intra- and inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Pablo Sánchez-Gámez, E-mail: pablo.sgamez@upm.es

References

Hide All
Alexandrov, E, Radionov, V and Svyashchennikov, P (2000) Climatic Regime and its Changes in the Region of the Barents and Kara seas. In transport and Fate of Contaminants in the nOrthern Seas. Sea Ice Project Package. St Petersburg: Arctic and Antarctic Research Institute.
Bader, H (1954) Sorge's law of densification of snow on high polar glaciers. Journal of Glaciology 2(15), 319323. doi: 10.3189/s0022143000025144.
Barkov, NI (1992) New data on the structure and development of the Vavilov Ice Dome, Severnaya Zemlya. Materialy Glyatsiologicheskikh Issledovaniy (Data of Glaciological Studies) 75, 3541
Bassford, R, Siegert, M and Dowdeswell, J (2006 a) Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. II: modeling the flow of the Vavilov Ice Cap under the present climate. Arctic, Antarctic, and Alpine Research 38(1), 1320. doi: 10.1657/1523-0430(2006)038[0013:qtmboi]2.0.co;2.
Bassford, R, Siegert, M and Dowdeswell, J (2006 b) Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. III: sensitivity of Ice Caps in Severnaya Zemlya to future climate change. Arctic, Antarctic, and Alpine Research 38(1), 2133. doi: 10.1657/1523-0430(2006)038[0021:qtmboi]2.0.co;2.
Bassford, R and 5 others (2006 c) Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. I: climate and mass balance of the Vavilov Ice Cap. Arctic, Antarctic, and Alpine Research 38(1), 112. doi: 10.1657/1523-0430(2006)038[0001:qtmboi]2.0.co;2.
Bindschadler, RA (2003) Tidally controlled stick-slip discharge of a west antarctic ice. Science 301(5636), 10871089. doi: 10.1126/science.1087231.
Bolshiyanov, D and Makeyev, V (1995) Arkhipelag Severnaya Zemlya: Oledeneniye, Istoriya Razvitiya Prirodnoy Sredy (Severnaya Zemlya Archipelago: Glaciation and Historical Development of the Natural Environment). St Petersburg: Gidrometeoizdat.
Bryazgin, NN and Yunak, RI (1988) Air Temperature and Precipitation on Severnaya Zemlya During Ablation and Accumulation Periods, in Geographical and Glaciological Studies in Polar Countries (in Russian). St. Petersburg. Gidrometeoizdat, pp. 7081.
Burgess, D, Sharp, M, Mair, D, Dowdeswell, J and Benham, T (2005) Flow dynamics and iceberg calving rates of Devon Ice Cap, Nunavut, Canada. J. Glaciology 51(173), 219230. doi: 10.3189/172756505781829430.
Carr, JR, Bell, H, Killick, R and Holt, T (2017) Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013. The Cryosphere 11(5), 21492174. doi: 10.5194/tc-11-2149-2017.
Carr, J, Stokes, C and Vieli, A (2014) Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions. Journal of Glaciology 60(219), 155170. doi: 10.3189/2014jog13j122.
Cogley, J and 10 others (2011) Glossary of Glacier Mass Balance and Related Terms. IHP-VII Tech. Doc. in Hydrol., 86, UNESCO-IHP, IACS Contribution 2, Paris, France.
Copland, L, Sharp, MJ and Nienow, PW (2003) Links between short-term velocity variations and the subglacial hydrology of a predominantly cold polythermal glacier. Journal of Glaciology 49(166), 337348. doi: 10.3189/172756503781830656.
Cuffey, KM and Paterson, WSB (2010) The Physics of Glaciers, 4th Edn. Oxford: Butterworth-Heinemann.
Dowdeswell, JA (2017) Eurasian Arctic Ice Shelves and Tidewater Ice Margins. Dordrecht, Netherlands: Springer, pp. 5574.
Dowdeswell, JA and Williams, M (1997) Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery. Journal of Glaciology 43(145), 489494. doi: 10.3189/S0022143000035097.
Dowdeswell, JA, Dowdeswell, EK, Williams, M and Glazovsky, AF (2010) The glaciology of the Russian High Arctic from Landsat imagery. U.S. Geological Survey Professional Paper, v. 1386-F, 94–125.
Dowdeswell, JA and 10 others (1997) The mass balance of Circum-Arctic glaciers and recent climate change. Quaternary Research 48(01), 114. doi: 10.1006/qres.1997.1900.
Dowdeswell, JA and 10 others (2002) Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. Journal of Geophysical Research 107(B4), 116. doi: 10.1029/2000jb000129.
Dunse, T, Schuler, T, Hagen, J and Reijmer, C (2012) Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements. The Cryosphere 6(2), 453466. doi: 10.5194/tc-6-453-2012.
Fetterer, F, Knowles, K, Meier, W, Savoie, M and Windnagel, A (2017) Sea Ice Index, Version 3. Monthly Data. Northern Hemisphere. Boulder, Colorado USA: NSIDC: National Snow and Ice Data Center. doi: 10.7265/n5k072f8, Date Accessed 2018-06-01.
Fritzsche, D and 6 others (2002) A new deep ice core from Akademii Nauk Ice Cap, Severnaya Zemlya, Eurasian Arctic: first results. Annals of Glaciology 35, 2528. doi: 10.3189/172756402781816645.
Fritzsche, D and 6 others (2005) A 275 year ice-core record from Akademii Nauk Ice Cap, Severnaya Zemlya, Russian Arctic. Annals of Glaciology 42, 361366. doi: 10.3189/172756405781812862.
Gardner, AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134), 852857. doi: 10.1126/science.1234532.
Glazovsky, A, Bushueva, I and Nosenko, G (2015) ‘Slow’ surge of the Vavilov Ice Cap, Severnaya Zemlya. Proceedings of the IASC Workshop on the Dynamics and Mass Balance of Arctic Glaciers, Obergurgl, Austria, 23–25 March 2015, pp. 17–18.
Grandin, R (2015) Interferometric processing of SLC Sentinel-1 TOPS data. Proceedings of the FRINGE'15: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, Frascati, Italy, 23–27 March 2015.
Hartmann, D and 13 others (2013) Observations: Atmosphere and Surface. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. doi: 10.1017/CBO9781107415324.008.
Holzner, J and Bamler, R (2002) Burst-mode and ScanSAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 40(9), 19171934. doi: 10.1109/tgrs.2002.803848.
Howat, IM, Joughin, I and Scambos, TA (2007) Rapid changes in ice discharge from greenland outlet glaciers. Science 315(5818), 15591561. doi: 10.1126/science.1138478.
Howat, I, Box, J, Ahn, Y, Herrington, A and McFadden, E (2010) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. Journal of Glaciology 56(198), 601613. doi: 10.3189/002214310793146232.
Huss, M and Farinotti, D (2012) Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research: Earth Surface 117, 110. doi: 10.1029/2012jf002523.
Huss, M and Hock, R (2015) A new model for global glacier change and sea-level rise. Frontiers in Earth Science 3, 122. doi: 10.3389/feart.2015.00054.
Jacob, T, Wahr, J, Pfeffer, WT and Swenson, S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482(7386), 514518. doi: 10.1038/nature10847.
Kalnay, E and 21 others (1996) The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77(3), 437472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Koerner, RM (1977) Devon Island Ice Cap: Core stratigraphy and paleoclimate. Science 196(4285), 1518. doi: 10.2307/1744032.
Konovalov, Y (2012) Inversion for basal friction coefficients with a two-dimensional flow line model using Tikhonov regularization. Research in Geophysics 2(2), 11. doi: 10.4081/rg.2012.e11.
Konovalov, YV and Nagornov, OV (2017) Two-dimensional prognostic experiments for fast-flowing ice streams from the Academy of Sciences Ice Cap. Journal of Physics. Conference Series 788, 012051. doi: 10.1088/1742-6596/788/1/012051.
Matsuo, K and Heki, K (2013) Current ice loss in small glacier systems of the Arctic islands (Iceland, Svalbard, and the Russian High Arctic) from satellite gravimetry. Terrestrial Atmospheric and Oceanic Sciences 24(4-1), 657. doi: 10.3319/tao.2013.02.22.01(tibxs).
Melkonian, A, Willis, M, Pritchard, M and Stewart, A (2016) Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment 174, 244257. doi: 10.1016/j.rse.2015.11.001.
Moholdt, G, Nuth, C, Hagen, JO and Kohler, J (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sensing of Environment 114(11), 27562767. doi: 10.1016/j.rse.2010.06.008.
Moholdt, G, Heid, T, Benham, T and Dowdeswell, JA (2012 a) Dynamic instability of marine-terminating glacier basins of Academy of Sciences Ice Cap, Russian High Arctic. Annals of Glaciology 53(60), 193201. doi: 10.3189/2012aog60a117.
Moholdt, G, Wouters, B and Gardner, AS (2012 b) Recent mass changes of glaciers in the Russian High Arctic. Geophysical Research Letters 39, 15. doi: 10.1029/2012gl051466.
Moon, T, Joughin, I and Smith, B (2015) Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. Journal of Geophysical Research-Earth 120(5), 818833. doi: 10.1002/2015jf003494.
Mooney, PA, Mulligan, FJ and Fealy, R (2011) Comparison of ERA-40, ERA-interim and NCEP/NCAR reanalysis data with observed surface air temperatures over ireland. International Journal of Climatology 31(4), 545557. doi: 10.1002/joc.2098.
Nagler, T, Rott, H, Hetzenecker, M, Wuite, J and Potin, P (2015) The Sentinel-1 mission: new opportunities for ice sheet observations. Remote Sensing 7(12), 93719389. doi: 10.3390/rs70709371.
Noh, MJ and Howat, IM (2015) Automated stereo-photogrammetric DEM generation at high latitudes: surface extraction with TIN-based search-space minimization (SETSM) validation and demonstration over glaciated regions. GIScience & Remote Sensing 52(2), 198217. doi: 10.1080/15481603.2015.1008621.
Noh, MJ, Howat, IM, Porter, CC, Willis, MJ and Morin, PJ (2016) Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Searchspace Minimization (SETSM) algorithm from RPCs-based Imagery. AGU Fall Meeting Abstracts, EP24C-07.
OBPG (2015 a) MODIS Terra Level 3 SST Thermal IR Annual 9 km Daytime v2014.0. Ver. 2014.0. PO.DAAC, CA, USA. doi: 10.5067/MODST-AN9D4, Dataset accessed [2018-06-01].
OBPG, (2015 b) MODIS Terra Level 3 SST Thermal IR Monthly 9 km Daytime v2014.0. Ver. 2014.0. PO.DAAC, CA, USA. doi: 10.5067/MODST-MO9D4, Dataset accessed [2018-06-01].
Opel, T, Fritzsche, D and Meyer, H (2013) Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya). Climate of the Past 9(5), 23792389. doi: 10.5194/cp-9-2379-2013.
Opel, T and 7 others (2009) 115 year ice-core data from Akademii Nauk Ice Cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change. Journal of Glaciology 55(189), 2131. doi: 10.3189/002214309788609029.
Otero, J and 5 others (2017) Modeling the controls on the front position of a tidewater glacier in Svalbard. Frontiers in Earth Science 5, 111. doi: 10.3389/feart.2017.00029.
Pfeffer, W and 18 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology 60(221), 537552. doi: 10.3189/2014JoG13J176.
Porter, C and 28 others (2018) ArcticDEM. doi: 10.7910/DVN/OHHUKH.
Radić, V and 5 others (2013) Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics 42(1-2), 3758. doi: 10.1007/s00382-013-1719-7.
Rodriguez, E and 6 others (2005) An Assessment of the SRTM Topographic Products (Technical Report JPL D-31639).
Sánchez-Gámez, P and Navarro, FJ (2018) Ice discharge error estimates using different cross-sectional area approaches: a case study for the Canadian High Arctic, 2016/17. doi: 10.1017/jog.2018.48, in press.
Scheiber, R, Jager, M, Prats-Iraola, P, Zan, FD and Geudtner, D (2015) Speckle tracking and interferometric processing of TerraSAR-x TOPS data for mapping nonstationary scenarios. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(4), 17091720. doi: 10.1109/jstars.2014.2360237.
Schellenberger, T, van Wychen, W, Copland, L, Kääb, A and Gray, L (2016) An inter-comparison of techniques for determining velocities of maritime arctic glaciers, Svalbard, using Radarsat-2 wide fine mode data. Remote Sensing 8(12), 785. doi: 10.3390/rs8090785.
Schoof, C (2010) Ice-sheet acceleration driven by melt supply variability. Nature 468(7325), 803806. doi: 10.1038/nature09618.
Sergienko, OV, MacAyeal, DR and Bindschadler, RA (2009) Stick–slip behavior of ice streams: modeling investigations. Annals of Glaciology 50(52), 8794. doi: 10.3189/172756409789624274.
Serreze, MC and Barry, RG (2014) The Arctic Climate System. Cambridge University Press, Cambridge, UK. doi: 10.1017/cbo9781139583817.
Sharov, A and Tyukavina, A (2009) Mapping and interpreting glacier changes in Severnaya Zemlya with the aid of differential interferometry and altimetry. Proceedings of Fringe 2009 Workshop, Frascati, Italy, 30 November–4 December 2009, ESA.
Short, N and Gray, A (2004) Potential for RADARSAT-2 interferometry: glacier monitoring using speckle tracking. Canadian Journal of Remote Sensing 30(3), 504509. doi: doi: 10.5589/m03-071.
Strozzi, T, Luckman, A, Murray, T, Wegmuller, U and Werner, C (2002) Glacier motion estimation using SAR offset-tracking procedures. IEEE Transactions on Geoscience and Remote Sensing 40(11), 23842391. doi: 10.1109/tgrs.2002.805079.
Strozzi, T, Paul, F, Wiesmann, A, Schellenberger, T and Kääb, A (2017) Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sensing 9(9), 947. doi: 10.3390/rs9090947.
Strozzi, T and 5 others (2008) Estimation of arctic glacier motion with satellite L-band SAR data. Remote Sensing of Environment 112(3), 636645. doi: 10.1016/j.rse.2007.06.007.
Sundal, AV and 5 others (2011) Melt-induced speed-up of Greenland Ice Sheet offset by efficient subglacial drainage. Nature 469(7331), 521524. doi: 10.1038/nature09740.
Svendsen, JI, Gataullin, V, Mangerud, J and Polyak, L (2004) The glacial history of the Barents and Kara sea region. In Developments in Quaternary Sciences. Elsevier, pp. 369378. doi: 10.1016/s1571-0866(04)80086-1.
van Wychen, W and 7 others (2017) Variability in ice motion and dynamic discharge from Devon Ice Cap, Nunavut, Canada. Journal of Glaciology 63(239), 436449. doi: 10.1017/jog.2017.2.
Vijay, S and Braun, M (2017) Seasonal and interannual variability of Columbia Glacier, Alaska (2011–2016): Ice velocity, mass flux, surface elevation and front position. Remote Sensing 9(7), 635. doi: 10.3390/rs9060635.
Wegmüller, U and 5 others (2015) Sentinel-1 support in the GAMMA software. Proceedings of the FRINGE'15: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, Frascati, Italy, 23–27 March 2015.
Werner, C, Wegmüller, U, Strozzi, T and Wiesmann, A (2005) Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images. Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium. IGARSS'05.
Wessel, P and Smith, W (1996) A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research 101(B4), 87418743. doi: 10.1029/96JB00104.
Willis, MJ, Melkonian, AK and Pritchard, ME (2015) Outlet glacier response to the 2012 collapse of the Matusevich Ice Shelf, Severnaya Zemlya, Russian Arctic. Journal of Geophysical Research: Earth Surface 120(10), 20402055. doi: 10.1002/2015jf003544.
Winberry, JP, Anandakrishnan, S, Alley, RB, Bindschadler, RA and King, MA (2009) Basal mechanics of ice streams: Insights from the stick-slip motion of whillans ice stream, west antarctica. Journal of Geophysical Research 114(F1), 111. doi: 10.1029/2008jf001035.
Zahn, M, Akperov, M, Rinke, A, Feser, F and Mokhov, II (2018) Trends of cyclone characteristics in the Arctic and their patterns from different reanalysis data. Journal of Geophysical Research: Atmospheres 123(5), 27372751. doi: 10.1002/2017JD027439.
Zan, FD and Guarnieri, AM (2006) TOPSAR: Terrain observation by progressive scans. IEEE Transactions on Geoscience and Remote Sensing 44(9), 23522360. doi: 10.1109/tgrs.2006.873853.
Zhao, M, Ramage, J, Semmens, K and Obleitner, F (2014) Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent. Environmental Research Letters 9(4), 045009. doi: 10.1088/1748-9326/9/4/045009.
Zheng, W and 6 others (2018) Accelerating glacier mass loss on franz josef land, russian arctic. Remote Sensing of Environment 211, 357375. doi: 10.1016/j.rse.2018.04.004.
Zwally, HJ (2002) Surface melt-induced acceleration of Greenland Ice-Sheet Flow. Science 297(5579), 218222. doi: 10.1126/science.1072708.
Zwally, HJ, Schutz, R, Hancock, D and Dimarzio, J (2014) GLAS/ICEsat L2 Global Land Surface Altimetry Data (HDF5), Version 34. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/ICESAT/GLAS/DATA211.
Zwally, H and 15 others (2002) ICESat's laser measurements of polar ice, atmosphere, ocean, and land. Journal of Geodynamics 34(3-4), 405445. doi: 10.1016/s0264-3707(02)00042-x.

Keywords

Type Description Title
PDF
Supplementary materials

Sánchez-Gámez et al. supplementary material
Sánchez-Gámez et al. supplementary material

 PDF (3.8 MB)
3.8 MB

Intra- and inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance

  • Pablo Sánchez-Gámez (a1), Francisco J. Navarro (a1), Toby J. Benham (a2), Andrey F. Glazovsky (a3), Robin P. Bassford (a4) and Julian A. Dowdeswell (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed