Skip to main content Accessibility help
×
Home

Initial investigations of dynamics of the maritime Koryto glacier, Kamchatka, Russia

  • Satoru Yamaguchi (a1), Renji Naruse (a1), Shin Sugiyama (a1), Takane Matsumoto (a1) and Yaroslav D. Murav’yev (a2)...

Abstract

Ice-flow velocities were measured at Koryto glacier on Kamchatka Peninsula, Russia, during a 37 day period in the middle of the 2000 melt season. Six survey points from the upper to the lower reaches of the glacier exhibited daily fluctuations in surface horizontal speed with major peaks that appeared at all points.We argue that basal motion is the major cause of flow on Koryto glacier. Downward vertical velocities measured over most of the glacier during the survey period are likely due to shrinking of englacial and subglacial cavities. This result may imply that a large amount of water is deposited in the early summer. Since 1960, Koryto glacier has retreated by 450 m and this retreat has accelerated following a decrease in winter precipitation after the mid 1970s.The glacier has thinned by 10–50 m during the last 40 years.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Initial investigations of dynamics of the maritime Koryto glacier, Kamchatka, Russia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Initial investigations of dynamics of the maritime Koryto glacier, Kamchatka, Russia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Initial investigations of dynamics of the maritime Koryto glacier, Kamchatka, Russia
      Available formats
      ×

Copyright

References

Hide All
Dyurgerov, M. B. and Meier, M. F.. 1997.Year-to-year fluctuations of global mass balance of small glaciers and their contribution to sea-level changes. Arct. Alp. Res., 29(4), 392402.
Dyurgerov, M. B. and Meier, M.F.. 1999. Analysis of winter and summer glacier mass balances. Geogr. Ann., 81A(4), 541554.
Gregory, J. M. and Oerlemans, J.. 1998. Simulated future sea-level rise due to glacier melt based on regionally and seasonally resolved temperature changes. Nature, 391(6666), 474476.
Haeberli, W. and Müller, P., comps. 1988. Fluctuations of glaciers 1980–1985 (Vol. V). Wallingford, Oxon, IAHS Press; Nairobi, UNEP; Paris, UNESCO.
Hanson, B. and Hooke, R. LeB.. 1994. Short-term velocity variations and basal coupling near a bergschrund, Storglaciären, Sweden. J. Glaciol., 40(134), 6774.
Hanson, B., Hooke, R. LeB. and Grace, E. M. Jr. 1998. Short-term velocity and water-pressure variations down-glacier from a riegel, Storglaciären, Sweden. J. Glaciol., 44(147), 359367.
Harrison, W. D. 1975. A measurement of surface-perpendicular strain-rate in a glacier. J. Glaciol., 14(70), 3137.
Hooke, R. LeB., Calla, P., Holmlund, P., Nilsson, M. and Stroeven, A.. 1989. A 3 year record of seasonal variations in surface velocity, Storglaciären, Sweden. J. Glaciol., 35(120), 235247.
Iken, A. and Bindschadler, R. A.. 1986. Combined measurements of subglacial water pressure and surface velocityof Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119.
Iken, A. and Truffer, M.. 1997. The relationship between subglacial water pressure and velocity of Findelengletscher, Switzerland, during its advance and retreat. J. Glaciol., 43(144), 328338.
Iken, A., Röthlisberger, H., Flotron, A. and Haeberli, W.. 1983. The uplift of Unteraargletscher at the beginning of the melt season — a consequence of water storage at the bed? J. Glaciol., 29(101), 2847.
Jansson, P. 1995.Water pressure and basal sliding on Storglaciären, northern Sweden. J. Glaciol., 41(138), 232240.
Kamb, B. and Engelhardt, H.. 1987. Waves of accelerated motion in a glacier approaching surge: the mini-surges of Variegated Glacier, Alaska, U.S.A. J. Glaciol., 33(113), 2746.
Mair, D.W. F., Sharp, M. J. and Willis, I. C.. 2002. Evidence for basal cavity opening from analysis of surface uplift during a high-velocity event: Haut Glacier d’Arolla, Switzerland. J. Glaciol., 48(161), 208216.
McCabe, G. J. Jr and Fountain, A. G.. 1995. Relations between atmospheric circulation and mass balance of South Cascade Glacier, Washington, U.S.A. Arct. Alp. Res., 27(3), 226233.
Meier, M. F. 1984. Contribution of small glaciers to global sea level. Science, 226(4681), 14181421.
Minobe, S. 1997. A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24(6), 683686.
Murav’yev, Ya. D. and 6 others. 1999. Mass balance of glacier in condition of maritime climate — Koryto glacier in Kamchatka, Russia. In Naruse, R., ed. Cryospheric studies in Kamchatka II. Sapporo, Hokkaido University. Institute of LowTemperature Science, 51–61.
Nienow, P., Sharp, M. and Willis, I.. 1998. Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d’Arolla, Switzerland. Earth Surf. Processes Landforms, 23(9), 825843.
Nitta, T. and Yamada, S.. 1989. Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteorol. Soc. Jpn, 67, 375383.
Paterson, W. S. B. 1994.The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Rabus, B., Echelmeyer, K., Trabant, D. and Benson, C.. 1995. Recent changes of McCall Glacier, Alaska. Ann. Glaciol., 21, 231239.
Shiraiwa, T., Murav’yev, Ya. D., Yamaguchi, S., Glazirin, G. E., Kodama, Y. and Matsumoto, T.. 1997. Glaciological features of Koryto glacier in the Kronotsky Peninsula, Kamchatka, Rusia. Bull. Glacier Res. 15, 2736.
Stenborg, T. 1970. Delay of run-off from a glacier basin. Geogr. Ann., 52A(1), 130.
Tangborn, W.V., Krimmel, R. M. and Meier, M. F.. 1975. A comparison of glacier mass balance by glaciological, hydrological and mapping methods, South Cascade Glacier, Washington. International Association of Hydrological Sciences Publication 104 (Symposium at Moscow 1971 — Snow and Ice), 185196.
Trenberth, K. E. 1990. Recent observed interdecadal climatic change in the Northern Hemisphere. Bull. Am. Meteorol. Soc., 71, 988993.
Vinogradov, V. N. 1968. 2–4. Basseyny rekTikhogo okeana (Okhotskoye i Beringovo morya) [2–4. Basins of rivers of the Pacific Ocean (Okhotsk and Bering Seas)]. Vol. 20. Kamchatka [Kamchatka]. Leningrad, Gidrometeorologicheskoye Izdatel’stvo. (Katalog lednikov SSSR [Catalogue of glaciers of the USSR].)
Weertman, J. 1979.The unsolved general glacier sliding problem. J. Glaciol., 23(89), 97115.
Willis, I. C. 1995. Intra-annual variations in glacier motion: a review. Prog. Phys. Geogr., 19(1), 61106.
Yamaguchi, S. and 6 others. 1998. Distribution and short-term variations of flow velocities at Koryto Glacier in the Kronotsky Peninsula, Kamchatka,Russia, in 1997. Bull. Glacier Res. 16, 5156.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed