Skip to main content Accessibility help
×
×
Home

Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large-scale ice-sheet models of Greenland

  • Robert S. Fausto (a1) (a2), Andreas P. Ahlstrøm (a1), Dirk Van as (a1), Sigfús J. Johnsen (a2), Peter L. Langen (a2) and Konrad Steffen (a3)...

Abstract

Snowpack changes during the melt season are often not incorporated in modelling studies of the surface mass balance of the Greenland ice sheet. Densification of snow accelerates when meltwater is present, due to percolation and subsequent refreezing, and needs to be incorporated in ice-sheet models for ablation calculations. In this study, simple parameterizations to calculate surface melt, snow densification and meltwater retention are included as surface boundary conditions in a large-scale ice-sheet model of Greenland. Coupling the snow densification and meltwater-retention processes achieves a separation of volume and mass changes of the surface layer, in order to determine the surface melt contribution to runoff. Experiments for present-day conditions show that snow depth at the onset of melt, mean annual near-surface air temperature and the mean density of the annual snow layer are key factors controlling the quantity and spatial distribution of meltwater runoff above the equilibrium line on the Greenland ice sheet.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large-scale ice-sheet models of Greenland
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large-scale ice-sheet models of Greenland
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large-scale ice-sheet models of Greenland
      Available formats
      ×

Copyright

References

Hide All
Bøggild, C.E., Forsberg, R. and Reeh, N.. 2005. Meltwater retention in a transect across the Greenland ice sheet. Ann. Glaciol., 40, 169173.
Bougamont, M. and 7 others. 2007. Impact of model physics on estimating the surface mass balance of the Greenland ice sheet. Geophys. Res. Lett., 34(17), L17501. (10.1029/2007GL030700.)
Box, J.E. and 8 others. 2006. Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output. J. Climate, 19(12), 27832800.
Braithwaite, R.J. 1985. Calculation of degree-days for glacier–climate research. Z. Gletscherkd. Glazialgeol., 20, 18.
Braithwaite, R.J. 1995. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol., 41(137), 153160.
Colbeck, S.C. 1976. An analysis of water flow in dry snow. Water Resour. Res., 12(3), 523527.
Fausto, R.S., Ahlstrøm, A. P., Van As, D., Bøggild, C.E. and Johnsen, S.J.. 2009. A new present-day temperature parameterization for Greenland. J. Glaciol., 55(189), 95105.
Fettweis, X. 2007. Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. Cryosphere, 1(1), 2140.
Greve, R. 2005. Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Ann. Glaciol., 42, 424432.
Hanna, E. and 8 others. 2008. Increased runoff from melt from the Greenland Ice Sheet: a response to global warming. J. Climate, 21(2), 331341.
Herron, M.M. and Langway, C.C. Jr., 1980. Firn densification: an empirical model. J. Glaciol., 25(93), 373385.
Hock, R. 2003. Temperature index melt modelling in mountain areas. J. Hydrol., 282(1–4), 104115.
Hooke, R.LeB. 2005. Principles of glacier mechanics. Second edition. Cambridge, etc., Cambridge University Press.
Huybrechts, P. and de Wolde, J.. 1999. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate, 12(8), 21692188.
Janssens, I. and Huybrechts, P.. 2000. The treatment of meltwater retardation in mass-balance parameterizations of the Greenland ice sheet. Ann. Glaciol., 31, 133140.
Lefebre, F., Gallée, H., van Ypersele, J.P. and Huybrechts, P.. 2002. Modelling of large-scale melt parameters with a regional climate model in south Greenland during the 1991 melt season. Ann. Glaciol., 35, 391397.
Li, J. and Zwally, H.J.. 2002. Modeled seasonal variations of firn density induced by steady-state surface air–temperature cycle. Ann. Glaciol., 34, 299302.
Li, J., Zwally, H.J., Cornejo, H. and Yi, D.. 2003. Seasonal variation of snow-surface elevation in North Greenland as modeled and detected by satellite radar altimetry. Ann. Glaciol., 37, 233238.
Li, J., Zwally, H.J. and Comiso, J.C.. 2007. Ice sheet elevation changes caused by variations of the firn compaction rate induced by satellite-observed temperature variations (1982–2003). Ann. Glaciol., 46, 813.
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Pfeffer, W.T., Meier, M.F. and Illangasekare, T.H.. 1991. Retention of Greenland runoff by refreezing: implications for projected future sea level change. J. Geophys. Res., 96(C12), 22,11722,124.
Reeh, N. 1991. Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung, 59(3), 113128.
Reeh, N. 2008. A nonsteady-state firn-densification model for the percolation zone of a glacier. J. Geophys. Res., 113(F3), F03023. (10.1029/2007JF000746.)
Reeh, N., Fisher, D.A., Koerner, R.M. and Clausen, H.B.. 2005. An empirical firn-densification model comprising ice lenses. Ann. Glaciol., 42, 101106.
Ritz, C., Fabre, A. and Letréguilly, A.. 1996. Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last glacial cycle. Climate Dyn., 13(1), 1123.
Solomon, S. and 29 others. 2007. Technical summary. In Solomon, S. and 7 others, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press, 2187.
Tarasov, L. and Peltier, W.R.. 1999. The impact of thermo-mechanical ice sheet coupling on a model of the 100 kyr ice-age cycle. J. Geophys. Res., 104(D8), 95179545.
Wankiewicz, A. 1979. A review of water movement in snow. In Colbeck, S.C. and Ray, M., eds. Proceedings of Modeling of Snow Cover Runoff, 26–28 September 1978, Hanover, New Hampshire. Hanover, NH, US Army Corps of Engineers. Cold Regions Research and Engineering Laboratory, 222252.
Zwally, H.J. and Li, J.. 2002. Seasonal and interannual variations of firn densification and ice-sheet surface elevation at Greenland summit. J. Glaciol., 48(161), 199207.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed