Skip to main content Accessibility help
×
×
Home

Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing

  • Julie Gardelle (a1), Etienne Berthier (a2) and Yves Arnaud (a3)
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing
      Available formats
      ×

Copyright

References

Hide All
Berthier, E, Arnaud, Y, Baratoux, D, Vincent, C and Rémy, F (2004) Recent rapid thinning of the Mer de Glace glacier derived from satellite optical images. Geophys. Res. Lett., 31(17), L17401 (doi: 10.1029/2004GL020706)
Berthier, E, Arnaud, Y, Vincent, C and Rémy, F (2006) Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes. Geophys. Res. Lett., 33(8), L08502 (doi: 10.1029/2006GL025862)
Berthier, E, Arnaud, Y, Kumar, R, Ahmad, S, Wagnon, P and Chevallier, P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ., 108(3), 327-338 (doi: 10.1016/ j.rse.2006.11.017)
Berthier, E, Schiefer, E, Clarke, GKC, Menounos, B and Remy, F (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geosci., 3(2), 92-95 (doi: 10.1038/ ngeo737)
Bolch, T, Pieczonka, T and Benn, DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere, 5(2), 349-358 (doi: 10.5194/tc-5- 349-2011)
Cogley, JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol., 50(50), 96-100 (doi: 10.3189/172756409787769744)
Dall, J, Madsen, S, Keller, K and Forsberg, R (2001) Topography and penetration of the Greenland ice sheet measured with airborne SAR interferometry. Geophys. Res. Lett., 28(9), 1703-1706 (doi: 10.1029/2000GL011787)
Davis, CH and Poznyak, VI (1993) The depth of penetration in Antarctic firn at 10 GHz. IEEE Trans. Geosci. Remote Sens., 31(5), 1107-1111
Huss, M, Usselmann, S, Farinotti, D and Bauder, A (2010) Glacier mass balance in the south-eastern Swiss Alps since 1900 and perspectives for the future. Erdkunde, 64(2), 119-140 (doi: 10.3112/erdkunde.2010.02.02)
Kervyn, M, Ernst, GGJ, Goossens, R and Jacobs, P (2008) Mapping volcano topography with remote sensing: ASTER vs. SRTM. Int. J. Remote Sens., 29(22), 6515-6538 (doi: 10.1080/01431160802167949)
Korona, J, Berthier, E, Bernard, M, Remy, F and Thouvenot, E (2009) SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: reference images and topographies during the fourth International Polar Year (2007-2009). ISPRS J. Photogramm. Rem. Sens, 64(2), 204-212 (doi: 10.1016/j.isprsjprs.2008.10.005)
Langley, K and 6 others (2008) From glacier facies to SAR backscatter zones via GPR. IEEE Trans. Geosci. Remote Sens., 46(9), 2506-2516 (doi: 10.1109/TGRS.2008.918648)
Larsen, CF, Motyka, RJ, Arendt, AA, Echelmeyer, KA and Geissler, PE (2007) Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise. J. Geophys. Res., 112(F1), F01007 (doi: 10.1029/2006JF000586)
Möller, M and Schneider, C (2010) Correspondence. Volume change at Gran Campo Nevado, Patagonia, 1984-2000: a reassessment based on new findings. J. Glaciol., 56(196), 363-365 (doi: 10.3189/002214310791968458)
Möller, M, Schneider, C and Kilian, R (2007) Glacier change and climate forcing in recent decades at Gran Campo Nevado, southernmost Patagonia. Ann. Glaciol., 46, 136-144 (doi: 10.3189/172756407782871530)
Nuth, C and Kääb, A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 5(1), 271-290 (doi: 10.5194/ tc-5-271-2011)
Paul, F (2008) Correspondence. Calculation of glacier elevation changes with SRTM: is there an elevation- dependent bias? J. Glaciol., 54(188), 945-946 (doi: 10.3189/ 002214308787779960)
Paul, F and Haeberli, W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys. Res. Lett., 35(21), L21502 (doi: 10.1029/ 2008GL034718)
Rignot, E, Echelmeyer, K and Krabill, W (2001) Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett., 28(18), 3501-3504 (doi: 10.1029/ 2000GL012484)
Rignot, E, Rivera, A and Casassa, G (2003) Contribution of the Patagonian icefields of South America to sea level rise. Science, 302(5644), 434-437 (doi: 10.1126/science.1087393)
Rodríguez, E, Morris, CS and Belz, JE (2006) A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens., 72(3), 249-260
Schiefer, E, Menounos, B and Wheate, R (2007) Recent volume loss of British Columbian glaciers, Canada. Geophys. Res. Lett., 34(16), L16503 (doi: 10.1029/2007GL030780)
Surazakov, AB and Aizen, VB (2006) Estimating volume change of mountain glaciers using SRTM and map-based topographic data. IEEE Trans. Geosci. Remote Sens., 44(10), 2991-2995 (doi: 10.1109/TGRS.2006.875357)
Surdyk, S (2002) Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: an analytical approach. Remote Sens. Environ., 80(2), 256-271 (doi: 10.1016/S0034-4257(01)00308-X)
Ulaby, FT, Moore, RK and Fung, AK (1986) Microwave remote sensing, active and passive. Vol. 3. From theory to applications. Addison-Wesley, Reading, MA
Wood, JD (1996) The geomorphological characterisation of digital elevation models. (PhD thesis, University of Leicester)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed