Skip to main content Accessibility help
×
Home

Identification of snow ablation rate, ELA, AAR and net mass balance using transient snowline variations on two Arctic glaciers

  • Sebastian H. Mernild (a1) (a2), Mauri Pelto (a3), Jeppe K. Malmros (a2), Jacob C. Yde (a4), Niels T. Knudsen (a5) and Edward Hanna (a6)...

Abstract

Identification of the transient snowline (TSL) from high spatial resolution Landsat imagery on Lemon Creek Glacier (LCG), southeast Alaska, USA, and Mittivakkat Gletscher (MG), southeast Greenland, is used to determine snow ablation rates, the equilibrium-line altitude (ELA) and the accumulation-area ratio (AAR). The rate of rise of the TSL during the ablation season on a glacier where the balance gradient is known provides a measure of the snow ablation rate. On both LCG and MG, snow pits were completed in regions that the TSL subsequently transects. This further provides a direct measure of the snow ablation rates for a particular year. TSL observations from multiple dates during the ablation season from 1998 to 2011 at LCG and 1999 to 2012 at MG were used to explore the consistency of the TSL rise and snow ablation rate. On LCG and MG the satellite-derived mean TSL migration rates were 3.8 ± 0.6 and 9.4 ± 9.1 m d−1, respectively. The snow ablation rates were 0.028 ± 0.004 m w.e. d−1 for LCG and 0.051 ± 0.018 m w.e. d−1 for MG estimated by applying a TSL–mass-balance-gradient method, and 0.031 ± 0.004 and 0.047 ± 0.019 m w.e. d−1 by applying a snow-pit–satellite method, illustrating significant agreement between the two different approaches for both field sites. Also, satellite-derived ELA and AAR, and estimated net mass-balance (B a) conditions were in agreement with observed ELA, AAR and B a conditions for LCG and MG.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Identification of snow ablation rate, ELA, AAR and net mass balance using transient snowline variations on two Arctic glaciers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Identification of snow ablation rate, ELA, AAR and net mass balance using transient snowline variations on two Arctic glaciers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Identification of snow ablation rate, ELA, AAR and net mass balance using transient snowline variations on two Arctic glaciers
      Available formats
      ×

Copyright

References

Hide All
Bahr, DB, Dyurgerov, M and Meier, MF (2009) Sea-level rise from glaciers and ice caps: a lower bound. Geophys. Res. Lett., 36(3), L03501 (doi: 10.1029/2008GL036309)
Born, EW and Böcher, J (2001) The ecology of Greenland. Ministry of Environment and Natural Resources, Greenland, Nuuk
Braithwaite, RJ and Raper, SCB (2007) Glaciological conditions in seven contrasting regions estimated with the degree-day model. Ann. Glaciol., 46, 297302 (doi: 10.3189/172756407782871206)
Cogley, JG and 10 others (2011) Glossary of glacier mass balance and related terms. (IHP-VII Technical Documents in Hydrology 86) UNESCO–International Hydrological Programme, Paris
Dyurgerov, M (1996) Substitution of long-term mass balance data by measurements of one summer. Z. Gletscherkd. Glazialgeol., 32, 177184
Dyurgerov, M, Meier, MF and Bahr, DB (2009) A new index of glacier area change: a tool for glacier monitoring. J. Glaciol., 55(192), 710716 (doi: 10.3189/002214309789471030)
Hall, DK, Chang, ATC, Foster, JL, Benson, CS and Kovalick, WM (1989) Comparison of in situ and Landsat derived reflectance of Alaskan glaciers. Remote Sens. Environ., 28, 2331 (doi: 10.1016/0034-4257(89)90102-8)
Hanna, E, Mernild, SH, Cappelen, J and Steffen, K (2012) Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ. Res. Lett., 7(4), 045404 (doi: 10.1088/1748-9326/7/4/045404)
Hock, R, Kootstraa, D-S and Reijmer, C (2007) Deriving glacier mass balance from accumulation area ratio on Storglaciären, Sweden. IAHS Publ. 318 (Symposium at Foz do Iguaçu 2005 – Glacier Mass Balance Changes and Meltwater Discharge), 163170
Knudsen, NT and Hasholt, B (1999) Radio-echo sounding at the Mittivakkat Gletscher, southeast Greenland. Arct. Antarct. Alp. Res., 31(3), 321328
Knudsen, NT and Hasholt, B (2008) Mass balance observations at Mittivakkat Gletscher, Southeast Greenland 1995–2006. Geogr. Tidsskr., 108(1), 111120
Knudsen, NT, Nønberg, P, Yde, JC, Hasholt, B and Heinemeier, J (2008) Recent marginal changes of the Mittivakkat Glacier, Southeast Greenland and the discovery of remains of reindeer (Rangifer tarandus), polar bear (Ursus maritimus) and peaty material. Geogr. Tidsskr., 108(1), 137142
Liston, GE and Elder, K (2006) A distributed snow-evolution modeling system (SnowModel). J. Hydromet., 7(6), 12591276 (doi: 10.1175/JHM548.1)
Liston, GE and Mernild, SH (2012) Greenland freshwater runoff. Part I: a runoff routing model for glaciated and nonglaciated landscapes (HydroFlow). J. Climate, 25(17), 59976014 (doi: 10.1175/JCLI-D-11-00591.1)
Marcus, MG, Chambers, FB, Miller, MM and Lang, M (1995) Recent trends in the Lemon Creek Glacier, Alaska. Phys. Geogr., 16(2), 150161
Mernild, SH and Liston, GE (2010) The influence of air temperature inversions on snow melt and glacier surface mass-balance simulations, Ammassalik Island, Southeast Greenland. J. Appl. Meteorol. Climatol., 49(1), 4767 (doi: 10.1175/2009JAMC2065.1)
Mernild, SH, Liston, GE, Hasholt, B and Knudsen, NT (2006) Snow distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, Southeast Greenland. J. Hydromet., 7(4), 808824 (doi: 10.1175/JHM522.1)
Mernild, SH, Hansen, BU, Jakobsen, BH and Hasholt, B (2008) Climatic conditions at the Mittivakkat Glacier catchment (1994–2006), Ammassalik Island, SE Greenland, and in a 109-year perspective (1898–2006). Geogr. Tidsskr., 108(1), 5172
Mernild, SH, Liston, GE, Steffen, K and Chylek, P (2010) Meltwater flux and runoff modeling in the ablation area of Jakobshavn Isbræ, West Greenland. J. Glaciol., 56(195), 2032 (doi: 10.3189/002214310791190794)
Mernild, SH and 6 others (2011a) Increasing mass loss from Greenland’s Mittivakkat Gletscher. Cryosphere, 5(2), 341348 (doi: 10.5194/tc-5-341-2011)
Mernild, SH, Knudsen, NT and Hanna, E (2011b) Mittivakkat Gletscher, SE Greenland. In Richter-Menge, J, Jeffries, MO and Overland, JE eds. Actic Report Card. (NOAA Report 2011) National Oceanic and Atmospheric Administration, Washington, DC http://www.arctic.noaa.gov/report11/
Mernild, SH, Malmros, JK, Yde, JC and Knudsen, NT (2012) Multidecadal marine- and land-terminating glacier recession in the Ammassalik region, southeast Greenland. Cryosphere, 6(3), 625639 (doi: 10.5194/tc-6-625-2012)
Mernild, SH and 7 others (2013) Volume and velocity changes at Mittivakkat Gletscher, southeast Greenland. J. Glaciol., 59(216), 660670
Miller, MM and Pelto, MS (1999) Mass balance measurements on the Lemon Creek Glacier, Juneau Icefield, Alaska 1953–1998. Geogr. Ann. A, 81(4), 671681
Østrem, G (1975) ERTS data in glaciology – an effort to monitor glacier mass balance from satellite imagery. J. Glaciol., 15(73), 403415
Pelto, MS (2010) Forecasting temperate alpine glacier survival from accumulation zone observations. Cryosphere, 4(1), 6775 (doi: 10.5194/tc-4-67-2010)
Pelto, M (2011) Utility of late summer transient snowline migration rate on Taku Glacier, Alaska. Cryosphere, 5(4), 11271133 (doi: 10.5194/tc-5-1127-2011)
Pelto, MS and Miller, MM (1990) Mass balance of the Taku Glacier, Alaska from 1946 to 1986. NorthwestSci., 64(3), 121130
Sapiano, JJ, Harrison, WD and Echelmeyer, KA (1998) Elevation, volume and terminus changes of nine glaciers in North America. J. Glaciol., 44(146), 119135
Tachikawa, T and 12 others (ASTER GDEM Validation Team) (2011) ASTER Global Digital Elevation Model Version 2 – summary of validation results, NASA Land Processes. NASA Distributed Active Archive Center, Joint Japan–US ASTER Science Team, http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validation_report_final.pdf
World Glacier Monitoring Service (WGMS) (2011) Glacier Mass Balance Bulletin No. 11 (2008–2009), ed. Zemp, M, Nussbaumer, SU, Gärtner-Roer, I, Hoelzle, M, Paul, F and Haeberli, W. ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zürich

Related content

Powered by UNSILO

Identification of snow ablation rate, ELA, AAR and net mass balance using transient snowline variations on two Arctic glaciers

  • Sebastian H. Mernild (a1) (a2), Mauri Pelto (a3), Jeppe K. Malmros (a2), Jacob C. Yde (a4), Niels T. Knudsen (a5) and Edward Hanna (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.