Skip to main content Accessibility help
×
Home

Ice discharge error estimates using different cross-sectional area approaches: a case study for the Canadian High Arctic, 2016/17

  • PABLO SÁNCHEZ-GÁMEZ (a1) and FRANCISCO J. NAVARRO (a1)

Abstract

We analyse the various error sources in the estimation of ice discharge through flux gates, distinguishing the cases with ice-thickness data available for glacier cross-sections or only along the centreline. For the latter, we analyse the performance of three U-shaped cross-sectional approaches. We apply this methodology to glaciers of the Canadian High Arctic. The velocity field is the main error source for small and medium-size glaciers (discharge <100 Mt a−1) with low velocities (<100 m a−1), while for large glaciers (discharge >100 Mt a−1) with high velocities (>100 m a−1) the error in cross-sectional area dominates. Thinning/thickening between ice-thickness and velocity measurements should be considered, as it implies systematic errors up to 8% in our study. The U-shaped parabolic approach, which allows for an adjusted estimation when the ice-thickness measurement point is displaced from the glacier centreline, performs best, with small bias and admissible standard error. We observe an increase of ice discharge from the main glaciers (Trinity and Wykeham) of the Prince of Wales Icefield from 2015 to 2016, by 5 and 20%, respectively, followed by a decrease in 2017, by 10 and 15%, respectively. Belcher Glacier, of the Devon Ice Cap, maintains similar discharges during 2015–17.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ice discharge error estimates using different cross-sectional area approaches: a case study for the Canadian High Arctic, 2016/17
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ice discharge error estimates using different cross-sectional area approaches: a case study for the Canadian High Arctic, 2016/17
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ice discharge error estimates using different cross-sectional area approaches: a case study for the Canadian High Arctic, 2016/17
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Pablo Sánchez-Gámez <pablo.sgamez@upm.es>

References

Hide All
Andersen, M and 10 others (2015) Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth Planet. Sci. Lett, 409, 8995. (doi: 10.1016/j.epsl.2014.10.015)
Błaszczyk, M, Jania, J and Hagen, J (2009) Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Pol. Polar Res., 30(2), 85142.
Brown, C, Meier, M and Post, A (1982) Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier. U.S. Geol. Surv. Prof. Pap., 1258-C, C1C13.
Burgess, D and Sharp, M (2004) Recent changes in areal extent of the Devon Ice Cap, Nunavut, Canada. Arct. Antarct. Alp. Res., 36(2), 261271. (doi: 10.1657/1523-0430(2004)036[0261:rciaeo]2.0.co;2)
Burgess, D, Sharp, M, Mair, D, Dowdeswell, J and Benham, T (2005) Flow dynamics and iceberg calving rates of Devon Ice Cap, Nunavut, Canada. J. Glaciol., 51(173), 219230. (doi: 10.3189/172756505781829430)
Burgess, E, Forster, R and Larsen, C (2013) Flow velocities of Alaskan glaciers. Nat. Commun., 4, 2146 (doi: 10.1038/ncomms3146)
Cogley, J and others (2011) Glossary of glacier mass balance and related terms. IHP-VII Tech. Doc. in Hydrol., 86, UNESCO-IHP, IACS Contribution 2, Paris, France.
Copland, L, Sharp, M and Dowdeswell, J (2003) The distribution and flow characteristics of surge-type glaciers in the Canadian High Arctic. Ann. Glaciol., 36, 7381. (doi: 10.3189/172756403781816301)
Cuffey, K and Paterson, W (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann,Oxford.
Dowdeswell, J, 10 others (2002) Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. J. Geophys. Res, 107(B4), 2076 (doi: 10.1029/2000jb000129)
Dowdeswell, J, Benham, T, Gorman, M, Burgess, D and Sharp, M (2004) Form and flow of the Devon Island Ice Cap, Canadian Arctic. J. Geophys. Res., 109(F2), L02002 (doi: 10.1029/2003jf000095)
Dowdeswell, J, Benham, T, Strozzi, T and Hagen, J (2008) Iceberg calving flux and mass balance of the Austfonna Ice Cap on Nordaustlandet, Svalbard. J. Geophys. Res., 113 (F3) (doi: 10.1029/2007jf000905)
Farinotti, D, Huss, M, Bauder, A, Funk, M and Truffer, M (2009) A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. J. Glaciol., 55(191), 422430. (doi: 10.3189/002214309788816759)
Gardner, A and 8 others (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature, 473(7347), 357360. (doi: 10.1038/nature10089)
Gardner, AS, 6 others (2018) Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. The Cryosphere, 12(2), 521547. (doi: 10.5194/tc-12-521-2018)
Geudtner, D, Torres, R, Snoeij, P, Davidson, M and Rommen, B (2014) Sentinel-1 system capabilities and applications. In 2014 IEEE Geoscience and Remote Sensing Symp., IEEE (doi: 10.1109/igarss.2014.6946711)
Gogineni, P (2012) Radar Depth Sounder Data Products. Digital media, Lawrence, Kansas.
Harbor, J (1992) Numerical modeling of the development of U-shaped valleys by glacial erosion. Geol. Soc. Am. Bull., 104(10), 13641375. (doi: 10.1130/0016-7606(1992)104¡1364:nmotdo¿2.3.co;2)
Holzner, J and Bamler, R (2002) Burst-mode and ScanSAR interferometry. IEEE Trans. Geosci. Remote Sens., 40(9), 19171934. (doi: 10.1109/tgrs.2002.803848)
Leuschen, C, Gogineni, P, Rodriguez-Morales, F, Paden, J and Allen, C (2010) Icebridge MCoRDS L2 Ice Thickness, Version 1 (doi: 10.5067/GDQ0CUCVTE2Q)
McNabb, R, Hock, R and Huss, M (2015) Variations in Alaska tidewater glacier frontal ablation, 1985–2013. J. Geophys. Res., 120(1), 120136. (doi: 10.1002/2014jf003276)
Millan, R, Mouginot, J and Rignot, E (2017) Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015. Environ. Res. Lett., 12(2), 024016 (doi: 10.1088/1748-9326/aa5b04)
NRCAN (2016) Canadian Digital Elevation Model Product Specifications. Government of Canada, Sherbrooke, Quebec, Canada, 1.1 edition.
Osmanoğlu, B, Braun, M, Hock, R and Navarro, F (2013) Surface velocity and ice discharge of the ice cap on King George Island, Antarctica. Ann. Glaciol., 54(63), 111119. (doi: 10.3189/2013aog63a517)
Osmanoğlu, B, Navarro, F, Hock, R, Braun, M and Corcuera, M (2014) Surface velocity and mass balance of Livingston Island ice cap, Antarctica. The Cryosphere, 8(5), 18071823. (doi: 10.5194/tc-8-1807-2014)
Pfeffer, W and 18 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol., 60(221), 537552. (doi: 10.3189/2014JoG13J176)
Radić, V and Hock, R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res., 115(F1), F01010 (doi: 10.1029/2009jf001373)
Rignot, E, Box, J, Burgess, E and Hanna, E (2008) Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35(20), L20502 (doi: 10.1029/2008gl035417)
Sánchez-Gámez, P and Navarro, F (2017) Glacier surface velocity retrieval using d-InSAR and offset tracking techniques applied to ascending and descending passes of Sentinel-1 Data for Southern Ellesmere Ice Caps, Canadian Arctic. Remote Sens., 9(5), 442 (doi: 10.3390/rs9050442)
Sharp, M and 12 others (2014) Remote sensing of recent glacier changes in the Canadian Arctic. InKargel, J, Leonard, G, Bishop, M, Kääb, A and Raup, B (eds.), Global and ce easurements from pace, Praxis, Springer, chapter 9, 205228.
Strozzi, T, Luckman, A, Murray, T, Wegmuller, U and Werner, C (2002) Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens., 40(11), 23842391. (doi: 10.1109/tgrs.2002.805079)
Strozzi, T, Paul, F, Wiesmann, A, Schellenberger, T and Kääb, A (2017) Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sens., 9(9), 947 (doi: 10.3390/rs9090947)
Thomas, R, 6 others (2000) Mass balance of the Greenland Ice Sheet at High elevations. Science, 289(5478), 426428. (doi: 10.1126/science.289.5478.426)
Van Wychen, W and 5 others (2012) Spatial and temporal variation of ice motion and ice flux from Devon Ice Cap, Nunavut, Canada. J. Glaciol., 58(210), 657664. (doi: 10.3189/2012jog11j164)
Van Wychen, W and 6 others (2014) Glacier velocities and dynamic ice discharge from the Queen Elizabeth Islands, Nunavut, Canada. Geophys. Res. Lett., 41(2), 484490. (doi: 10.1002/2013gl058558)
Van Wychen, W and 5 others (2015) Glacier velocities and dynamic discharge from the ice masses of Baffin Island and Bylot Island, Nunavut, Canada. Can. J. Earth Sci., 52(11), 980989. (doi: 10.1139/cjes-2015-0087)
Van Wychen, W and 6 others (2016) Characterizing interannual variability of glacier dynamics and dynamic discharge (1999–2015) for the ice masses of Ellesmere and Axel Heiberg Islands, Nunavut, Canada. J. Geophys. Res., 121(1), 3963. (doi: 10.1002/2015jf003708)
Van Wychen, W and 7 others (2017) Variability in ice motion and dynamic discharge from Devon Ice Cap, Nunavut, Canada. J. Glaciol., 63(239), 436449. (doi: 10.1017/jog.2017.2)
Vijay, S and Braun, M (2017) Seasonal and interannual variability of Columbia Glacier, Alaska (2011–2016): Ice velocity, mass flux, surface elevation and front position. Remote Sens., 9(7), 635 (doi: 10.3390/rs9060635)
Wegmüller, U and 5 others (2016) Sentinel-1 support in the GAMMA software. Procedia. Comput. Sci., 100, 13051312. (doi: 10.1016/j.procs.2016.09.246)
Werner, C, Wegmüller, U, Strozzi, T and Wiesmann, A (2005) Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images. IGARSS'05, Seoul, Korea, 25–29 July 2005, 48034805.
Wessel, P and Smith, W (1996) A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res., 101(B4), 87418743. (doi: 10.1029/96JB00104)
Williamson, S, Sharp, M, Dowdeswell, J and Benham, T (2008) Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999–2003. J. Glaciol., 54(186), 391400. (doi: 10.3189/002214308785837048)

Keywords

Type Description Title
PDF
Supplementary materials

Sánchez-Gámez and Navarro supplementary material
Sánchez-Gámez and Navarro supplementary material 1

 PDF (7.8 MB)
7.8 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed