Skip to main content Accessibility help
×
Home

Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland

  • Yushin Ahn (a1) and Jason E. Box (a1) (a2)

Abstract

Automated digital cameras were installed in May–June 2007 beside major West Greenland marine-terminating glaciers as part of the Extreme Ice Survey (EIS). EIS cameras began imaging the lowest 4 km2 of the glacier at hourly intervals throughout sunlit periods of the year. This study presents the development of techniques for quantifying glacier velocity from a single camera perspective. A Multi-Image/Multi-Chip matching procedure yields higher matching skill than conventional matching, and facilitates false-match rejection via a clustering scheme. The matching of motionless on-land features facilitates compensating camera motion. Ray projection to a known terrain elevation allows the assigning of scale to convert pixel displacements to velocity units. With the 10.2-megapixel camera system, velocities on relatively fast glaciers can be resolved at distances up to ∼4 km. At a distance of 2 km, a demonstrated precision of ∼0.5 pixels yields a ∼0.5 m footprint size. Daily velocities indicate progressive multi-day velocity accelerations associated with calving. Deceleration trends are associated with the regrowth of resistive stress after major calving. The higher observation frequency available to terrestrial photogrammetry indicates higher observed intra-seasonal velocity range than observable by the at-best weekly satellite snapshots.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland
      Available formats
      ×

Copyright

References

Hide All
Abdalati, W. and 9 others. 2001. Outlet glacier and margin elevation changes: near-coastal thinning of the Greenland ice sheet. J. Geophys. Res., 106(D24), 33,72933,742.
Ahn, Y. and Howat, I.M.. 2009. Automated glacier surface velocity using Multi-Image/Multi-Chip (MIMC) feature tracking. [Abstr. C23C-0510.] Eos, 90(52), Fall Meet. Suppl.
Amundson, J.M., Truffer, M., Lüthi, M.P., Fahnestock, M., West, M. and Motyka, R.J.. 2008. Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(22), L22501. (10.1029/2008GL035281.)
Amundson, J.M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M.P. and Motyka, R.J.. 2010. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115(F1), F01005. (10.1029/2009JF001405.)
Bauer, A. 1968. Missions aériennes de reconnaissance au Groenland 1957–1958. Medd. Grønl., 173(3).
Brecher, H.H. and Thompson, L.G.. 1993. Measurement of the retreat of Qori Kalis glacier in the tropical Andes of Peru by terrestrial photogrammetry. Photogramm. Eng. Remote Sens., 59(6), 10171022.
Brown, L.G. 1992. A survey of image registration techniques. ACM Comput. Surv., 24(4), 325376.
Carbonnell, M. and Bauer, A.. 1968. Exploitation des couvertures photographiques aériennes répétées du front des glaciers vêlant dans Disko Bugt et Umanak Fjord, juin–juillet, 1964. Medd. Grønl., 173(5)
Chapuis, A., Rolstad, C. and Norland, R.. 2010. Interpretation of amplitude data from a ground-based radar in combination with terrestrial photogrammetry and visual observations for calving monitoring of Kronebreen, Svalbard. Ann. Glaciol., 51(55), 3440.
Csatho, B., Schenk, T., van der Veen, C.J. and Krabill, W.B.. 2008. Intermittent thinning of Jakobshavn Isbræ, West Greenland, since the Little Ice Age. J. Glaciol., 53(184), 131144.
Dietrich, R. and 6 others. 2007. Jakobshavn Isbræ, West Greenland: flow velocities and tidal interaction of the front area from 2004 field observations. J. Geophys. Res., 112(F3), F03S21. (10.1029/2006JF000601.)
Echelmeyer, K. and Harrison, W.D.. 1990. Jakobshavns Isbræ, West Greenland: seasonal variations in velocity – or lack thereof. J. Glaciol., 36(122), 8288.
Evans, A.N. 2000. Glacier surface motion computation from digital image sequences. IEEE Trans. Geosci. Remote Sens., 38(2), 10641072.
Fastook, J.L., Brecher, H.H. and Hughes, T.J.. 1995. Derived bedrock elevations, strain rates and stresses from measured surface elevations and velocities: Jakobshavns Isbræ, Greenland. J. Glaciol., 41(137), 161173.
Fischler, M.A. and Bolles, R.C.. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6), 381395.
Fountain, A.G. 1983. Columbia Glacier photogrammetric altitude and velocity: data set (1975–1981). USGS Open File Rep. 82-756.
Gonzales, R.C. and Woods, R.E.. 2002. Digital image processing. Second edition. Upper Saddle River, NJ, Prentice Hall.
Hamilton, G.S. and Whillans, I.M.. 2000. Point measurements of mass balance of the Greenland ice sheet using precision vertical global positioning system (GPS) surveys. J. Geophys. Res., 105(B7), 16,29516,301.
Harper, J.T., Humphrey, N.F., Pfeffer, W.T. and Lazar, B.. 2007. Two modes of accelerated glacier sliding related to water. Geophys. Res. Lett., 34(12), L12503. (10.1029/2007GL030233.)
Harrison, W.D., Echelmeyer, K.A., Cosgrove, D.M. and Raymond, C.F.. 1992. The determination of glacier speed by time-lapse photography under unfavourable conditions. J. Glaciol., 38(129), 257265.
Howat, I.M., Joughin, I.R. and Scambos, T.A.. 2007. Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818), 15591561.
Howat, I.M., Box, J.E., Ahn, Y., Herrington, A. and McFadden, E.. 2010. Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol., 56(198), 601613.
Joughin, I., Abdalati, W. and Fahnestock, M.A.. 2004. Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature, 432(7017), 608610.
Joughin, I., Das, S.B., King, M.A., Smith, B.E., Howat, I.M. and Moon, T.. 2008. Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320(5877), 781783.
Krabill, W.B. and 9 others. 2000. Greenland ice sheet: high-elevation balance and peripheral thinning. Science, 289(5478), 428430.
Luckman, A., Murray, T., de Lange, R. and Hanna, E.. 2006. Rapid and synchronous ice-dynamic changes in East Greenland. Geophys. Res. Lett., 33(3), L03503. (10.1029/2005GL025428.)
Maas, H.-G., Dietrich, R., Schwalbe, E., Bässler, M. and Westfeld, P.. 2006. Analysis of the motion behaviour of Jakobshavn Isbræ Glacier in Greenland by monocular image sequence analysis. Int. Arch. Photogramm. Remote Sens., 16(5), 179183.
Motyka, R.J., Hunter, L., Echelmeyer, K.A. and Connor, C.. 2003. Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36, 5765.
Motyka, R., Fahnestock, M., Howat, I.M., Truffer, M., Brecher, H. and Luethi, M.. 2008. Jakobshavn Isbrae, Greenland: DEMs, orthophotos, surface velocities, and ice loss derived from photogram-metric re-analysis of July 1985 repeat aerial photography. [Abstr. C13A-0563.] Eos, 89(52), Fall Meet. Suppl.
O’Neel, S., Echelmeyer, K.A. and Motyka, R.J.. 2003. Short-term variations in calving of a tidewater glacier: LeConte Glacier, Alaska, U.S.A. J. Glaciol., 49(167), 587598.
Rignot, E. and Kanagaratnam, P.. 2006. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986990.
Scambos, T.A., Dutkiewicz, M.J., Wilson, J.C. and Bindschadler, R.A.. 1992. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ., 42(3), 177186.
Schenk, T. 1999. Digital photogrammetry. Laurelville, OH, TerraScience.
Schwalbe, E., Maas, H.-G., Dietrich, R. and Ewert, H.. 2008. Glacier velocity determination from multi-temporal long range laser scanner point clouds. Int. Arch. Photogramm. Remote Sens., 37(B5), 457462.
Skvarca, P., Raup, B. and De Angelis, H.. 2003. Recent behaviour of Glaciar Upsala, a fast-flowing calving glacier in Lago Argentino, southern Patagonia. Ann. Glaciol., 36, 184188.
Slama, C.C., Theurer, C. and Henriksen, S.W., eds. 1980. Manual of photogrammetry. Fourth edition. Falls Church, VA, American Society of Photogrammetry.
Sohn, H.G., Jezek, K.C. and van der Veen, C.J.. 1998. Jakobshavn Glacier, West Greenland: 30 years of spaceborne observations. Geophys. Res. Lett., 25(14), 26992702.
Weidick, A. and Bennike, O.. 2007. Quaternary glaciation history and glaciology of Jakobshavn Isbræ and the Disko Bugt region: a review. Copenhagen, Geological Survey of Denmark and Greenland. (GEUS Bulletin 14.)
Zitová, B. and Flusser, J.. 2003. Image registration methods: a survey. Image Vision Comput., 21(11), 9771000.

Related content

Powered by UNSILO

Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland

  • Yushin Ahn (a1) and Jason E. Box (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.