Skip to main content Accessibility help
×
Home

Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data

  • ZHEN ZHANG (a1) (a2), SHIYIN LIU (a2) (a3), YONG ZHANG (a4), JUNFENG WEI (a4), ZONGLI JIANG (a4) and KUNPENG WU (a5)...

Abstract

Twin glaciers collapsed in 2016 near Aru Co, western Tibet and caused extreme loss to human beings. In this study, we attempted to track the dynamics of glaciers in the region, for example the glacier area and mass changes in Aru Co for the period 1971–2016, which were determined using topographic maps and Landsat images and ASTER-derived DEMs (2011–16), the Shuttle Radar Terrain Mission DEM (2000) and topographic maps (1971). Our results showed that the glacier area of Aru Co decreased by −0.4 ± 4.1% during 1971–2016. The geodetic mass-balance results showed that the glaciers in Aru Co lost mass at a rate of −0.15 ± 0.30 m w.e. a−1 during 1971–99, while they gained mass at a rate of 0.33 ± 0.61 m w.e. a−1 for the period 1999–2016. The twin glaciers experienced a larger negative mass budget than the others in the region before 1999. This process produced large amounts of meltwater, followed by a sustained increase in the meltwater on the pressure melting point, possibly in response to a period of positive mass balance (1999–2016) and then, transferred to the glacier bed until the glaciers collapsed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Zhen Zhang and Shiyin Liu <zhangzhen@aust.edu.cn> and <shiyin.liu@ynu.edu.cn>

References

Hide All
Björnsson, H (1998) Hydrological characteristics of the drainage system beneath a surging glacier. Nature, 395(6704), 771774 (doi: 10.1038/27384)
Bolch, T, Buchroithner, MF, Peters, J, Baessler, M and Bajracharya, S (2008) Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest Region/Nepal Using Spaceborne Imagery. Nat. Hazard Earth Sys., 8(6), 13291340 (doi: 10.5194/nhess-8-1329-2008)
Bolch, T, Menounos, B and Wheate, R (2010) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ., 114(1), 127137 (doi: 10.1016/j.rse.2009.08.015)
Burgess, EW, Forster, RR, Larsen, CF and Braun, M (2012) Surge dynamics on bering glacier, Alaska, in 2008–2011. Cryosphere, 6(6), 12511262 (doi: 10.5194/tc-6-1251-2012)
Clarke, GKC, Collins, SG and Thompson, DE (1984) Flow, thermal structure, and subglacial conditions of a surge-type glacier. Canadian J. Earth Sci., 21(2), 232240 (doi: 10.1139/e84-024)
Gardelle, J, Berthier, E and Arnaud, Y (2012) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol., 58(208), 419422 (doi: 10.3189/2012jog11j175)
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere, 7(4), 12631286 (doi: 10.5194/tc-7-1263-2013)
Gardner, AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)
Guo, W and 10 others (2015) The second Chinese glacier inventory: data, methods and results. J.Glaciol., 61(226), 357372 (doi: 10.3189/2015JoG14J209)
Hirano, A, Welch, R and Lang, H (2003) Mapping from ASTER stereo image data: DEM validation and accuracy assessment. Isprs J Photogramm., 57(5–6), 356370 (doi: 10.1016/s0924-2716(02)00164-8)
Holzer, N and 5 others (2015) Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere, 9(6), 20712088 (doi: 10.5194/tc-9-2071-2015)
Huggel, C and 7 others (2005) The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat. Hazard Earth Sys., 5, 173187 (doi: 10.5194/nhess-5-173-2005)
Huss, M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere, 7(3), 877887 (doi: 10.5194/tc-7-877-2013)
Höhle, J and Höhle, M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. Isprs J. Photogramm., 64(4), 398406 (doi: DOI 10.1016/j.isprsjprs.2009.02.003)
Immerzeel, WW, van Beek, LP and Bierkens, MF (2010) Climate change will affect the Asian water towers. Science, 328(5984), 13821385 (doi: 10.1126/science.1183188)
Kamb, B and 7 others (1985) Glacier surge mechanism – 1982–1983 surge of variegated glacier, Alaska. Science, 227(4686), 469479 (doi: 10.1126/science.227.4686.469)
Kääb, A and 18 others (2018) Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat. Geosci., 11, 114120 (doi: 10.1038/s41561-017-0039-7)
Lin, H, Li, G, Cuo, L, Hooper, A and Ye, Q (2017) A decreasing glacier mass balance gradient from the edge of the upper Tarim basin to the Karakoram during 2000–2014. Sci. Rep., 7(1), 6712 (doi: 10.1038/s41598-017-07133-8)
Liu, SY and 7 others (2015) The contemporary glaciers in China based on the second Chinese glacier inventory. Acta Geogr. Sin., 70(1), 316 (doi: 10.11821/dlxb201501001) [In Chinese]
Murray, T and 6 others (2000) Glacier surge propagation by thermal evolution at the bed. J.Geophys. Res., 105(B6), 13491 (doi: 10.1029/2000jb900066)
Murray, T, Luckman, A, Strozzi, T and Nuttall, AM (2003) The initiation of glacier surging at Fridtjovbreen, Svalbard. A. Glaciol., 36, 110116 (doi: 10.3189/172756403781816275)
Neckel, N, Braun, A, Kropáček, J and Hochschild, V (2013) Recent mass balance of the purogangri Ice Cap, central Tibetan plateau, by means of differential X-band SAR interferometry. Cryosphere, 7(5), 16231633 (doi: 10.5194/tc-7-1623-2013)
Neckel, N, Kropáček, J, Bolch, T and Hochschild, V (2014) Glacier mass changes on the Tibetan plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett., 9(1), 17 (doi: 10.1088/1748-9326/9/1/014009)
Nuth, C and Kääb, A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 5(1), 271290 (doi: 10.5194/tc-5-271-2011)
Paul, F and 19 others (2013) On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol., 54(63), 171182 (doi: 10.3189/2013aog63a296)
Pieczonka, T and Bolch, T (2015) Region-wide glacier mass budgets and area changes for the central tien shan between ~ 1975 and 1999 using Hexagon KH-9 imagery. Global Planet. Change, 128, 113 (doi: 10.1016/j.gloplacha.2014.11.014)
Quincey, DJ, Glasser, NF, Cook, SJ and Luckman, A (2015) Heterogeneity in Karakoram glacier surges. J. Geophys. Res-Earth., 120(7), 12881300 (doi: 10.1002/2015jf003515)
Rankl, M, Kienholz, C and Braun, M (2014) Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere, 8, 977989 (doi: 10.5194/tc-8-977-2014)
Shangguan, DH and 6 others (2015) Mass changes of Southern and Northern Inylchek glacier, central Tian Shan, Kyrgyzstan, during ~1975 and 2007 derived from remote sensing data. Cryosphere, 9(2), 703717 (doi: 10.5194/tc-9-703-2015)
Shangguan, DH and 6 others (2016) Characterizing the May 2015 Karayaylak glacier surge in the eastern Pamir plateau using remote sensing. J. Glaciol., 62(235), 944953 (doi: 10.1017/jog.2016.81)
Shi, YF (2008) Concise glacier inventory of China. Shanghai Popular Science Press, Shanghai, China
Shi, YF and Liu, SY (2000) Estimation on the response of glaciers in China to the global warming in the 21st century. Chinese Sci. Bull., 45(7), 668672 (doi: 10.1007/Bf02886048)
Tian, LD and 7 others (2016) Two glaciers collapse in western Tibet. J. Glaciol., 63(237), 194197 (doi: 10.1017/jog.2016.122)
Wang, NL, Xu, BQ, Pu, JC and Zhang, YL (2013) Discovery of the water-rich ice layers in glaciers on the Tibetan plateau and its environmental significances. J. Glaciol. Geocryol., 35(6), 13711381 (doi: 10.7522/j.issn.1000-0240.2013.0152) [In Chinese]
Wei, JF and 7 others (2014) Surface-area changes of glaciers in the Tibetan plateau interior area since the 1970s using recent landsat images and historical maps. A. Glaciol., 55(66), 213222 (doi: 10.3189/2014aog66a038)
Yao, TD and 9 others (2012) Different glacier status with atmospheric circulations in Tibetan plateau and surroundings. Nat. Clim. Change, 2(9), 663667 (doi: 10.1038/Nclimate1580)
Ye, QH and 5 others (2017) Glacier changes on the Tibetan plateau derived from landsat imagery: mid-1970s – 2000–13. J. Glaciol., 63(238), 273287 (doi: 10.1017/jog.2016.137)
Zhang, Z and 6 others (2016a) Mass change of glaciers in Muztag Ata-Kongur Tagh, eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data. PLoS ONE, 11(1), e0147327 (doi: 10.1371/journal.pone.0147327)
Zhang, T, Ding, M, Xiao, C, Zhang, D and Du, Z (2016) Temperate ice layer found in the upper area of Jima Yangzong glacier, the headstream of Yarlung Zangbo river. Sci. Bull., 61(8), 619621 (doi: 10.1007/s11434-016-1045-7)
Zhang, Z and 5 others (2016b) Glacier changes since the early 1960s, eastern Pamir, China. J. Mountain Sci., 13(2), 276291 (doi: 10.1007/s11629-014-3172-4)

Keywords

Type Description Title
WORD
Supplementary materials

Zhang et al. supplementary material
Figure S1

 Word (2.5 MB)
2.5 MB

Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data

  • ZHEN ZHANG (a1) (a2), SHIYIN LIU (a2) (a3), YONG ZHANG (a4), JUNFENG WEI (a4), ZONGLI JIANG (a4) and KUNPENG WU (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed