Skip to main content Accessibility help
×
Home

Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data

  • KUNPENG WU (a1) (a2) (a3), SHIYIN LIU (a2) (a3), ZONGLI JIANG (a4), JUNLI XU (a5) and JUNFENG WEI (a4)...

Abstract

To obtain information on changes in glacier mass balance in the central Nyainqentanglha Range, a comprehensive study was carried out based on digital-elevation models derived from the 1968 topographic maps, the Shuttle Radar Topography Mission DEM (2000) and TerraSAR-X/TanDEM-X (2013). Glacier area changes between 1968 and 2016 were derived from topographic maps and Landsat OLI images. This showed the area contained 715 glaciers, with an area of 1713.42 ± 51.82 km2, in 2016. Ice cover has been shrinking by 0.68 ± 0.05% a−1 since 1968. The glacier area covered by debris accounted for 11.9% of the total and decreased in the SE–NW directions. Using digital elevation model differencing and differential synthetic aperture radar interferometry, a significant mass loss of 0.46 ± 0.10 m w.e. a−1 has been recorded since 1968; mass losses accelerated from 0.42 ± 0.20 m w.e. a−1 to 0.60 ± 0.20 m w.e. a−1 between 1968–2000 and 2000–2013, with thinning noticeably greater on the debris-covered ice than the clean ice. Surface-elevation changes can be influenced by ice cliffs, as well as debris cover and land- or lake-terminating glaciers. Changes showed spatial and temporal heterogeneity and a substantial correlation with climate warming and decreased precipitation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Kunpeng Wu <wukunpeng2008@lzb.ac.cn>; Shiyin Liu <liusy@lzb.ac.cn>

Footnotes

Hide All
*

These authors contributed equally to this work and should be considered co-first authors.

Footnotes

References

Hide All
Arendt, A and 87 others (2015) Randolph glacier inventory – a dataset of global glacier outlines. Version 5.0. Boulder, CO, University of Colorado. National Snow and Ice Data Center (NSIDC). Global Land Ice Measurements from Space (GLIMS), digital media, 63 pp (www.glims.org/RGI/00_rgi50_TechnicalNote.pdf)
Bao, W, Liu, S, Wei, J and Guo, W (2015) Glacier changes during the past 40 years in the West Kunlun Shan. J. Mt. Sci., 12(2), 344357 (doi: 10.1007/s11629-014-3220-0)
Benn, DI and Lehmkuhl, F (2000) Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quat. Int., 65–66, 1529 (doi: 10.1016/S1040-6182(99)00034-8)
Benn, DI and 9 others (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci. Rev., 114(1–2), 156174 (doi: 10.1016/j.earscirev.2012.03.008)
Berthier, E, Arnaud, Y, Vincent, C and Rémy, F (2006) Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes. Geophys. Res. Lett., 33(8), L08502 (doi: 10.1029/2006GL025862)
Berthier, E and 5 others (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ., 108(3), 327338 (doi: 10.1016/j.rse.2006.11.017)
Berthier, E, Schiefer, E, Clarke, GKC, Menounos, B and Rémy, F (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nat. Geosci., 3(2), 9295 (doi: 10.1038/ngeo737)
Böhner, J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas, 35, 279295
Bolch, T, Buchroithner, M, Pieczonka, T and Kunert, A (2008) Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol., 54(187), 592600 (doi: 10.3189/002214308786570782)
Bolch, T, Menounos, B and Wheate, R (2010a) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ., 114(1), 127137 (doi: 10.1016/j.rse.2009.08.015)
Bolch, T and 7 others (2010b) A glacier inventory for the western Nyainqentanglha Range and Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere, 4(3), 419433 (doi: 10.5194/tc-4-419-2010)
Bolch, T, Pieczonka, T and Benn, DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere, 5(2), 349358 (doi: 10.5194/tc-5-349-2011)
Braithwaite, RJ and Raper, SCB (2009) Estimating equilibrium line altitude (ELA) from glacier inventory data. Ann. Glaciol., 50(53), 127132 (doi: 10.3189/172756410790595930)
Brun, F, Berthier, E, Wagnon, P, Kääb, A and Treichler, D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci., 10(9), 668673 (doi: 10.1038/ngeo2999)
Chinese National Standard (2008) Compilation specifications for national fundamental scale maps. Part 1: Compilation specifications for 1:25000/1:50000/1:100000 topographic maps. Beijing, General Administration of Quality Supervision, Inspection and Quarantine, GB/T 12343.1-2008 [in Chinese]
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Elsevier. Butterworth-Heinemann, Amsterdam, 488 pp
Davis, CH and Poznyak, VI (1993) The depth of penetration in Antarctic firn at 10 GHz. IEEE Trans. Geosci. Remote Sens., 31(5), 11071111 (doi: 10.1109/36.263784)
Duan, J, Li, L and Fang, Y (2015) Seasonal spatial heterogeneity of warming rates on the Tibetan Plateau over the past 30 years. Sci. Rep., 5, 11725 (doi: 10.1038/srep11725)
Frey, H, Paul, F and Strozzi, T (2012) Compilation of a glacier inventory for the western Himalayas from satellite data: methods challenges and results. Remote Sens. Environ., 124, 832843 (doi: 10.1016/j.rse.2012.06.020)
Gardelle, J, Berthier, E and Arnaud, Y (2012a) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing [Correspondence]. J. Glaciol., 58(208), 419422 (doi: 10.3189/2012JoG11J175)
Gardelle, J, Berthier, E and Arnaud, Y (2012b) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci., 5(5), 322325 (doi: 10.1038/ngeo1450)
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere, 7(4), 12631286 (doi: 10.5194/tc-7-1263-2013)
Gardner, AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)
Guo, W and 10 others (2015) The second Chinese glacier inventory: data, methods, and results. J. Glaciol., 61(226), 357372 (doi: 10.3189/2015JoG14J209)
Han, H, Wang, J, Wei, J and Liu, S (2010) Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China. J. Glaciol., 56(196), 287296 (doi: 10.3189/002214310791968430)
Huss, M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere, 7(3), 877887 (doi: 10.5194/tc-7-877-2013)
Immerzeel, WW, van Beek, LPH and Bierkens, MFP (2010) Climate change will affect the Asian water towers. Science, 328(5984), 13821385 (doi: 10.1126/science.1183188)
IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp (doi: 10.1017/CBO9781107415324)
Kääb, A (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens. Environ., 94(4), 463474 (doi: 10.1016/j.rse.2004.11.003)
Kääb, A, Berthier, E, Nuth, C, Gardelle, J and Arnaud, Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495498 (doi: 10.1038/nature11324)
Kääb, A, Treichler, D, Nuth, C and Berthier, E (2015) Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya [Brief Communication]. Cryosphere, 9(2), 557564 (doi: 10.5194/tc-9-557-2015)
Ke, L, Ding, X and Song, C (2015) Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sens. Environ., 168, 1323 (doi: 10.1016/j.rse.2015.06.019)
Ke, L and 5 others (2016) Compiling a new glacier inventory for southeastern Qinghai–Tibet Plateau from Landsat and PALSAR data. J. Glaciol., 62(233), 579592 (doi: 10.1017/jog.2016.58)
Koblet, T and 6 others (2010) Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959-99) – Part 1: determination of length, area, and volume changes. Cryosphere, 4(3):333343 (doi: 10.5194/tc-4-333-2010)
Krieger, G and 6 others (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens., 45(11), 33173341 (doi: 10.1109/TGRS.2007.900693)
Kubanek, J and 5 others (2015) Volumetric change quantification of the 2010 Merapi eruption using TanDEM-X InSAR. Remote Sens. Environ., 164, 1625 (doi: 10.1016/j.rse.2015.02.027)
Leber, D, Holawe, F and Häusler, H (1995) Climatic classification of the Tibet Autonomous Region using multivariate statistical methods. GeoJournal, 37, 451472
Li, G and Lin, H (2017) Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry. Global Planet. Change, 149, 177190 (doi: 10.1016/j.gloplacha.2016.12.018)
Li, J, Zheng, B and Yang, X (1986) The glaciers of Xizang (Tibet). Science Press, Beijing, Chinese Academy of Sciences, ix + 328 pp [In Chinese]
Li, X and 9 others (2008) Cryospheric change in China. Global Planet. Change, 62(3–4), 210218 (doi: 10.1016/j.gloplacha.2008.02.001)
Li, L, Yang, S, Wang, Z, Zhu, X and Tang, H (2010) Evidence of warming and wetting climate over the Qinghai–Tibet Plateau. Arct. Antarct. Alp. Res., 42(4), 449457 (doi: 10.1657/1938-4246-42.4.449)
Li, Z, Xing, Q, Liu, S, Zhou, J and Huang, L (2012) Monitoring thickness and volume changes of the Dongkemadi ice field on the Qinghai–Tibetan Plateau (1969–2000) using Shuttle Radar Topography Mission and map data. Int. J. Digital Earth, 5(6), 516532 (doi: 10.1080/17538947.2011.594099)
Li, X, Yang, T and Ji, Q (2014) Study on glacier variations in the Gangrigabu Range. Res. Soil Water Conserv., 21(4), 233237, In Chinese
Li, G, Lin, H and Ye, Q (2018) Heterogeneous decadal glacier downwasting at the Mt. Everest (Qomolangma) from 2000 to similar to 2012 based on multi-baseline bistatic SAR interferometry. Remote Sens. Environ., 206, 336349 (doi: 10.1016/j.rse.2017.12.032)
Liu, S and 6 others (2017) Climate change impacts and risks. The research of climate change impacts and risks on glacier. Science Press, Beijing, [In Chinese]
Loibl, D, Lehmkuhl, F and Grießinger, J (2014) Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier mapping and equilibrium line altitude calculation. Geomorphology, 214, 223910.1016/j.geomorph.2014.03.018
Maussion, F and 5 others (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. Journal of Climate, 27, 19101927
Mi, D and 5 others (2002) Glacier inventory of China XI. the Ganga drainage basin. XII. Indus drainage basin. Xi'an Cartographic Publishing House, Lanzhou Institute of Glaciology and Geocryology, Xi'an, 552 pp [In Chinese]
Molnar, P, Boos, WR and Battisti, DS (2010) Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38(1), 77102
Neckel, N, Braun, A, Kropáček, J and Hochschild, V (2013) Recent mass balance of the Purogangri ice cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. Cryosphere, 7(5), 16231633 (doi: 10.5194/tc-7-1623-2013)
Neckel, N, Kropáček, J, Bolch, T and Hochschild, V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett., 9(1), 014009 (doi: 10.1088/1748-9326/9/1/014009)
Neckel, N, Loibl, D and Rankl, M (2017) Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet. Earth Planet. Sci. Lett., 464, 95102 (doi: 10.1016/j.epsl.2017.02.008)
Neelmeijer, J, Motagh, M and Bookhagen, B (2017) High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous region: a case study of Inylchek Glacier, Central Asia. ISPRS J. Photogramm. Remote Sens., 130, 108121 (doi: 10.1016/j.isprsjprs.2017.05.011)
Nuimura, T and 12 others (2015) The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers. Cryosphere, 9(3), 849864 (doi: 10.5194/tc-9-849-2015)
Nuth, C and Kääb, A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 5(1), 271290 (doi: 10.5194/tc-5-271-2011)
Oerlemans, J (1994) Quantifying global warming from the retreat of glaciers. Science, 264(5156), 243245 (doi: 10.1126/science.264.5156.243)
Paul, F and 9 others (2009) Recommendations for the compilation of glacier inventory data from digital sources. Ann. Glaciol., 50(53), 119126 (doi: 10.3189/172756410790595778)
Paul, F and 24 others (2015) The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ., 162, 408426 (doi: 10.1016/j.rse.2013.07.043)
Pellicciotti, F and 5 others (2015) Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, between 1974 and 1999. J. Glaciol., 61(226), 373386 (doi: 10.3189/2015JoG13J237)
Pieczonka, T, Bolch, T, Wei, J and Liu, S (2013) Heterogeneous mass loss of glaciers in the Aksu-Tarim catchment (central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens. Environ., 130, 233244 (doi: 10.1016/j.rse.2012.11.020)
Pu, J (2001) Glacier inventory of China IX. The Lancang river. X. The Nujiang river. Xi'an Cartographic Publishing House, Xi'an, 179 pp [In Chinese]
Rabus, B, Eineder, M, Roth, A and Bamler, R (2003) The Shuttle radar topography mission: a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogram. Remote Sens., 57(4), 241262 (doi: 10.1016/S0924-2716(02)00124-7)
Racoviteanu, AE, Williams, MW and Barry, RG (2008) Optical remote sensing of glacier characteristics: a review with focus on the Himalaya. Sensors, 8(5), 33553383 (doi: 10.3390/s8053355)
Racoviteanu, AE, Paul, F, Raup, BH, Khalsa, SJS and Armstrong, R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann. Glaciol., 50(53), 5369 (doi: 10.3189/172756410790595804)
Reid, TD and Brock, BW (2014) Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy. J. Glaciol., 60(219), 313 (doi: 10.3189/2013JoG13J045)
Rignot, E, Echelmeyer, K and Krabill, W (2001) Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett., 28(18), 35013504 (doi: 10.1029/2000GL012484)
Sakai, A, Nakawo, M and Fujita, K (2002) Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya, Arct. Antarct. Alp. Res., 34(1), 1219 (doi: 10.2307/1552503)
Scherler, D, Bookhagen, B and Strecker, MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci., 4(3), 156159 (doi: 10.1038/ngeo1068)
Shangguan, D and 6 others (2010) Changes in the elevation and extent of two glaciers along the Yanglonghe River, Qilian Shan, China. J. Glaciol., 56(196), 309317 (doi: 10.3189/002214310791968566)
Shangguan, D and 10 others (2014) Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery. Ann. Glaciol., 55(66), 6168 (doi: 10.3189/2014AoG66A057)
Shi, Y and Liu, S (2000) Estimation on the response of glaciers in China to the global warming in the 21st century. Chin. Sci. Bull., 45(7), 668672 (doi: 10.1007/BF02886048)
Shi, Y, Huang, M and Ren, B (1988) An introduction to the glaciers in China. Science Press, Beijing, 243 pp [In Chinese]
Surdyk, S (2002) Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: an analytical approach. Remote Sens. Environ., 80(2), 256271 (doi: 10.1016/S0034-4257(01)00308-X)
Vijay, S and Braun, M (2016) Elevation Change Rates of Glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sens., 8, 1038 (doi: 10.3390/rs8121038)
Wei, J and 6 others (2015) Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER images. J. Mt. Sci., 12(2), 330343 (doi: 10.1007/s11629-014-3175-1)
Wu, K and 6 others (2016) Glacier change in the western Nyainqentanglha Range, Tibetan Plateau using historical maps and Landsat imagery: 1970–2014. J. Mt. Sci., 13(8), 13581374 (doi: 10.1007/s11629-016-3997-0)
Wu, K and 5 others (2018) Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. Cryosphere, 12(1), 103121 (doi: 10.5194/tc-12-103-2018)
Xu, J, Liu, S, Zhang, S, Guo, W and Wang, J (2013) Recent changes in glacial area and volume on Tuanjiefeng Peak region of Qilian Mountains, China. PLOS ONE, 8(8), e70574 (doi: 10.1371/journal.pone.0070574)
Yang, W and 5 others (2008) Quick ice mass loss and abrupt retreat of the maritime glaciers in the Kangri Karpo Mountains, southeast Tibetan Plateau. Chin. Sci. Bull., 53(16), 25472551 (doi: 10.1007/s11434-008-0288-3)
Yang, W and 5 others (2010) Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo River basin, southeast Tibetan Plateau. Chin. Sci. Bull., 55(20), 20972102 (doi: 10.1007/s11434-010-3214-4)
Yang, W and 5 others (2013) Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J. Geophys. Res. Atmos., 118(17), 95799594 (doi: 10.1002/jgrd.50760)
Yang, K and 5 others (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global Planet. Change, 112, 7991 (doi: 10.1016/j.gloplacha.2013.12.001)
Yao, T, Ren, J and Xu, B (2008) Map of glaciers and lakes on the Tibetan Plateau and adjoining regions. (Scale: 1:2,000,000) Xi'an Cartographic Publishing House, Lanzhou Institute of Glaciology and Geocryology, Xi'an [In Chinese]
Yao, T and 14 others (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change, 2(9), 663667 (doi: 10.1038/nclimate1580)
Ye, Q and 8 others (2015) Glacier mass changes in Rongbuk catchment on Mt. Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data. J. Hydrol., 530, 273280 (doi: 10.1016/j.jhydrol.2015.09.014)
You, Q and 6 others (2010) Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global Planet. Change, 71(1–2), 124133 (doi: 10.1016/j.gloplacha.2010.01.020)
Zhang, Y, Fujita, K, Liu, S, Liu, Q and Nuimura, T (2011) Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. J. Glaciol., 57(206), 11471157 (doi: 10.3189/002214311798843331)
Zhang, Z and 6 others (2016) Mass change of glaciers in Muztag Ata–Kongur Tagh, eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data. PLOS ONE, 11(1), e0147327 (doi: 10.1371/journal.pone.0147327)
Zhao, Y and Zhu, J (2015) Assessing quality of grid daily precipitation datasets in China in recent 50 years. Plateau Meteorology, 34(1), 5058 (doi: 10.7522/j.issn.1000-0534.2013.0014) [In Chinese]
Zhou, Y, Li, Z, Li, J, Zhao, R and Ding, X (2018) Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ., 210, 96112 (doi: 10.1016/j.rse.2018.03.020)
Zwally, HJ and 11 others (2011) Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. J. Glaciol., 57(201), 88102 (doi: 10.3189/002214311795306682)

Keywords

Type Description Title
PDF
Supplementary materials

Wu et al. supplementary material
Figures S1-S5 and Table S1

 PDF (4.3 MB)
4.3 MB

Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data

  • KUNPENG WU (a1) (a2) (a3), SHIYIN LIU (a2) (a3), ZONGLI JIANG (a4), JUNLI XU (a5) and JUNFENG WEI (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed