Skip to main content Accessibility help

Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000–13



Glacier area changes on the Tibetan Plateau were studied in different drainage basins based on Landsat satellite images from three epochs: 263 in the mid-1970s, 150 in 1999–2002 and 148 in 2013/14. Three mosaics (M1976, M2001 and M2013) with minimal cloud and snow cover were constructed, and the uncertainty due to each epoch having a finite span was accounted for. Glacier outlines (TPG1976, TPG2001 and TPG2013) were digitized manually with guidance from the SRTM DEM v4.1 and Google Earth imagery. To achieve complete multi-temporal coverage in a reasonable time, only debris-free ice was delineated. Area mapping uncertainty was evaluated at three study sites, Mount Qomolangma (Everest), Mount Naimona'Nyi, Mount Geladandong, where the largest differences between present and earlier measurements were within ~±4%. Area differences with previous inventories ranged from −19.6% (TPG1976 minus the first Chinese Glacier Inventory) to −3.6% and −1.1% (TPG2013 and TPG2001, respectively minus the second Chinese Glacier Inventory), while the difference TPG2001 minus the GAMDAM Glacier Inventory was +10.4%. Glacier area on the plateau decreased from 44 366 ± 2827 km2 (1.7% of the study area) in the 1970s to 42 210 ± 1621 km2 in 2001 and 41 137 ± 1616 km2 in 2013. Shrinkage was faster in external drainage basins of the southeast than in the interior basins of the northwest, from a maximum of −0.43% a−1 (−1.60% a−1 during 1994–2013) in the Mekong catchment down to a minimum of −0.12% a−1 in the Tarim interior drainage.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000–13
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000–13
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000–13
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Qinghua Ye <>


Hide All
Arendt, A and 88 others (2015) Randolph Glacier Inventory – A dataset of global glacier outlines: Version 5.0. Global Land Ice Measurements from Space, Boulder, CO. Digital media:
Bajracharya, SR, Maharjan, SB and Shrestha, F (2014) The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data. Ann. Glaciol., 55(66), 159166 (doi: 10.3189/2014AoG66A125)
Bolch, T and 7 others (2010) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere, 4, 419433 (doi: 10.5194/tc-4-419-2010)
Bolch, T and 11 others (2012) The state and fate of Himalayan glaciers. Science, 336, 310314 (doi: 10.1126/science.1215828)
Cogley, JG (2016) Glacier shrinkage across High Mountain Asia. Ann. Glaciol., 57(71), 4149 (doi: 10.3189/2016AoG71A040)
Ding, YJ, Liu, SY, Li, J and Shangguan, DH (2006) The retreat of glaciers in response to recent climate warming in western China. Ann. Glaciol., 43, 97105 (doi: 10.3189/172756406781812005)
Fujita, K and Nuimura, T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc. Natl. Acad. Sci., 108(34), 1401114014 (doi: 10.1073/pnas.1106242108)
Gardelle, J, Berthier, E and Arnaud, Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geosci., 5(5), 322325 (doi: 10.1038/ngeo1450)
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere, 7(6), 18851886 (doi: 10.5194/tc-7-1263-2013)
Gardner, AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857 (doi: 10.1126/science.1234532)
Granshaw, FD and Fountain, AG (2006) Glacier change (1958–1998) in the North Cascades National Park Complex, Washington, USA. J. Glaciol., 52(177), 251256 (doi: 10.3189/172756506781828782)
Guo, WQ and 16 others (2014) The Second Glacier Inventory Dataset of China (version 1.0). Cold and Arid Regions Science Data Center at Lanzhou. (doi: 10.3972/glacier.001.2013.db)
Guo, WQ and 10 others (2015) The second Chinese glacier inventory: data, methods and results. J. Glaciol., 61(226), 357372 (doi: 10.3189/2015JoG14J209)
Holzer, N and 5 others (2015) Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere, 9, 20712088 (doi: 10.5194/tc-9-2071-2015)
Kääb, A, Treichler, D, Nuth, C and Berthier, E (2015) Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere, 9(2), 557564 (doi: doi:10.5194/tc-9-557-2015)
Ke, LH, Ding, XL and Song, CQ (2015) Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Rem. Sens. Envir., 168, 1323 (doi: 10.1016/j.rse.2015.06.019)
Li, X and 9 others (2008) Cryospheric change in China. Global Plan. Change, 62(3–4), 210218 (doi: 10.1016/j.gloplacha.2008.02.001)
Liu, SY and 7 others (2015) The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geogr. Sinica, 70(1), 316. In Chinese with English abstract (doi: 10.11821/dlxb201501001)
Neckel, N, Kropáček, J, Bolch, T and Hochschild, V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Envir. Res. Lett., 9(1), 014009 (doi: 10.1088/1748-9326/9/1/014009)
Nuimura, T and 12 others (2015) The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers. Cryosphere, 9(3), 849864 (doi: 10.5194/tc-9-849-2015)
Paul, F and Kääb, A (2005) Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island. Ann. Glaciol., 42, 5966 (doi: 10.3189/172756405781813087)
Paul, F and 19 others (2013) On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol., 54(63), 171182 (doi: 10.3189/2013AoG63A296)
Pfeffer, WT and 76 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol., 60(221), 537552 (doi: 10.3189/2014JoG13J176)
Racoviteanu, AE, Paul, F, Raup, B, Singh Khalsa, SJ and Armstrong, R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann. Glaciol., 50(53), 5369 (doi: 10.3189/172756410790595804)
Raup, B and 11 others (2007) Remote sensing and GIS technology in the global land ice measurements from space (GLIMS) project. Comp. Geosci., 33(1), 104125 (doi: 10.1016/j.cageo.2006.05.015)
Rivera, A, Casassa, G, Bamber, J and Kääb, A (2005) Ice-elevation changes of Glaciar Chico, southern Patagonia, using ASTER DEMs, aerial photographs and GPS data. J. Glaciol., 51(172), 105112 (doi: 10.3189/172756505781829557)
Shi, YF, Liu, SY, Ye, B, Liu, CH and Wang, Z (2008) Concise Glacier Inventory of China. Shanghai Popular Science Press, Shanghai.
Shukla, A, Gupta, RP and Arora, RK (2009) Estimation of debris cover and its temporal variation using optical satellite sensor data: a case study in Chenab basin, Himalaya. J. Glaciol., 55(191), 444452 (doi: 10.3189/002214309788816632)
Wang, PY and 5 others (2013) Changes of six selected glaciers in the Tomor region, Tian Shan, Central Asia, over the past ~50 years, using high-resolution remote sensing images and field surveying. Quat. Intl., 311, 123131 (doi: 10.1016/j.quaint.2013.04.031)
Wei, JF and 6 others (2014) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann. Glaciol., 55(66), 213222 (doi: 10.3189/2014AoG66A038)
Yang, W and 5 others (2013) Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J. Geophys. Res: Atmos., 118(17), 95799594 (doi: 10.1002/jgrd.50760)
Yao, TD and 14 others (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change, 2(9), 663667 (doi: 10.1038/nclimate1580)
Ye, QH, Kang, SC and Chen, F (2006a) Monitoring glacier variations on Geladandong Mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies. J. Glaciol., 52(179), 537545 (doi: 10.3189/172756506781828359)
Ye, QH, Yao, TD, Kang, SC, Chen, F and Wang, JH (2006b) Glacier variations in the Naimona'nyi region, western Himalaya, in the last three decades. Ann. Glaciol., 43, 385389 (doi: 10.3189/172756406781812032)
Ye, QH and 5 others (2009) Monitoring glacier and supra-glacier lakes from space in Mt. Qomolangma region of the Himalayas on the Tibetan Plateau in China. J. Mtn. Sci., 6(3), 211220 (doi: 10.1007/s11629-009-1016-4)
Zemp, M and 38 others (2015) Historically unprecedented global glacier decline in the early 21st century. J. Glaciol., 61(228), 745761 (doi: 10.3189/2015JoG15J017)
Zhang, YL, Li, BY and Zheng, D (2014) Datasets of the boundary and area of the Tibetan Plateau. Acta Geographica Sinica., 69(S), 164168 (doi: 10.11821/dlxb2014S012)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Ye supplementary material
Figure S1 and Tables S1-S3

 PDF (334 KB)
334 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed