Skip to main content Accessibility help

Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s



Western Kunlun Mountain (WKM) glaciers show balanced or even slightly positive mass budgets in the early 21st century, and this is anomalous in a global context of glacier reduction. However, it is unknown whether the stability prevails at longer time scales because mass budgets have been unavailable before 2000. Here topographical maps, Shuttle Radar Topography Mission and Landsat data are used to examine the area and surface elevation changes of glaciers on the WKM since the 1970s. Heterogeneous glacier behaviors are observed not only in the changes of length and area, but also in the spatial distribution of surface elevation changes. However, on average, glacier area and elevation changes are not significant. Glaciers reduce in the area by 0.07 ± 0.1% a−1 from the 1970s to 2016. Averaged glacier mass loss is −0.06 ± 0.13 m w.e. a−1 from the 1970s to 1999. These findings show that the WKM glacier anomaly extends back at least to the 1970s.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Y. Wang <>; S. Hou <>


Hide All
An, W and 6 others (2016) Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records. Sci. Rep., 6, 32813 (doi: 10.1038/srep32813)
Bao, W, Liu, S, Wei, J and Guo, W (2015) Glacier changes during the past 40 years in the West Kunlun Shan. J. Mount. Sci., 12, 344357 (doi: 10.1007/s11629-014-3220-0)
Barundun, M and 8 others (2015) Re-analysis of seasonal mass balance at Abramov glacier 1968–2014. J. Glaciol., 61, 11031117 (doi: 10.3189/2015JoG14J239)
Beaulieu, A and Clavet, D (2009) Accuracy assessment of Canadian digital elevation data using ICESat. Photogramm. Eng. Remote Sens., 75, 8186
Berthier, E, Arnaud, Y, Vincent, C and Rémy, F (2006) Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes. Geophys. Res. Lett., 33, L08502 (doi: 10.1029/2006GL025862)
Bhambri, R and 5 others (2013) Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. Cryosphere, 7, 13851398
Bolch, T and 7 others (2010) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere, 4, 419433 (doi: 10.5194/tc-4-419-2010)
Bolch, T, Pieczonka, T and Benn, D (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalayas) derived from stereo imagery. Cryosphere, 5, 349358
Bolch, T and 11 others (2012) The state and fate of Himalayan glaciers. Science, 366, 310314
Bolch, T, Pieczonka, T, Mukherjee, K and Shea, J (2017) Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere, 11, 531539 (doi: 10.5194/tc-11-531-2017)
Citterio, M and 6 others (2007) The fluctuations of Italian glaciers during the last century: a contribution to knowledge about Alpine glacier changes. Geogr. Ann. A, 89, 164182
Citterio, M, Paul, F, Ahlstrøm, AP, Jepsen, HF and Weidick, A (2009) Remote sensing of glacier change in West Greenland: accounting for the occurrence of surge-type glaciers. Ann. Glaciol., 50, 7080
Cogley, JG (2016) Glaicer shrinkage across High Mountain Asia. Ann. Glaciol., 57, 4149 (doi: 10.3189/2016AoG71A040)
Copland, L and 7 others (2011) Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res., 43, 503516 (doi: 10.1657/1938-10 4246-43.4.503)
de Kok, RJ, Tuinenburg, OA, Bonekamp, PNJ and Immerzeel, WW (2018) Irrigation as a potential driver for anomalous glacier behavior in High Mountain Asia. Geophys. Res. Lett., 45, 20472054 (doi: 10.1002/2017GL076158)
Fischer, M, Huss, M and Hoelzle, M (2015) Surface elevation and mass changes of all Swiss glaciers 1980–2010. Cryosphere, 9, 525540 (doi: 10.5194/tc-9-525-2015)
Forsythe, N, Fowler, HJ, Li, XF, Blenkinsop, S and Pritchard, D (2017) Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Change, 7, 664670 (doi: 10.1038/nclimate3361)
Gao, YJ and Zang, DF (2009) The conversion method and accuracy analysis between WGS-84 coordinate system and Xi'an 80 coordinate system. Eng. surveying mapping, 18, 5557
Gardelle, J, Berthier, E and Arnaud, Y (2012a) Slight mass gain of Karakoram glaciers in the early 21st century. Nat. Geosci., 5, 322325
Gardelle, J, Berthier, E and Arnaud, Y (2012b) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol., 58, 419422 (doi: 10.3189/2012JoG11J175)
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere, 7, 12631286 (doi: 10.5194/tc-7-1263-2013)
Gardner, AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857
General Administration of Quality Supervision Inspection and Quarantine (2008) GB/T12353.1-2008: Compilation Specifications for National Fundamental Scale Maps-Part 1: Compilation Specifications for 1:25000/1:50000/1:100000 Topographic Maps. General Administration of Quality Supervision Inspection and Quarantine, Beijing
Hewitt, K (2005) The Karakoram anomaly? Glacier expansion and the “elevation effect”. Karakoram Himalaya. Mt. Res. Dev., 25, 332340
Holzer, N and 5 others (2015) Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere, 9, 20712088 (doi: 10.5194/tc-9-2071-2015)
Huss, M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere, 7, 877887 (doi: 10.5194/tc-7-877-2013)
Immerzeel, WW, van Beek, LPH and Bierkens, MFP (2010) Climate change will affect the Asian water towers. Science, 328, 13821385
Jarvis, A, Reuter, HI, Nelson, A and Guevara, E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database (
Ji, P, Guo, H and Zhang, L (2013) Remote sensing study of glacier dynamic change in West Kunlun Mountains in the past 20 years. Remote Sens. Land Resources, 25, 9398 (In Chinese)
Kääb, A (2008) Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry, a test study on Edgeøya, Eastern Svalbard. IEEE Tran. Geosci. Remote Sens., 46, 28232830
Kääb, A, Berthier, E, Nuth, C, Gardelle, J and Arnaud, Y (2008) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495498
Kääb, A, Treichler, D, Nuth, C and Berthier, E (2015) Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere, 9, 557564
Kapnick, SB, Delworth, TL, Ashfaq, M, Malyshev, S and Milly, PCD (2014) Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci., 7, 834840
Ke, LH, Ding, XL and Song, CQ (2015) Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sens. Environ., 168, 1323
Lin, H, Li, G, Cuo, L, Hooper, A and Ye, Q (2017) A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014. Sci. Rep., 7, 612 (doi: 10.1038/s41598-017-07133-8)
Magruder, LA, Webb, CE, Urban, TJ, Silverberg, EC and Schutz, BE (2007) ICESat altimetry data product verification at white sands space harbor. IEEE Trans. Geosci. Remote Sens., 45, 147155
Maurer, JM, Rupper, SB and Schaefer, JM (2016) Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery. Cryosphere, 10, 22032215
Maussion, F and 5 others (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Clim., 27, 19101927
Minora, U and 10 others (2016) Glacier area stability in the Central Karakoram National Park (Pakistan) in 2001–2010: The ‘‘Karakoram Anomaly’’ in the spotlight. Pro. Phys. Geog., 40, 132
Nuth, C and Kääb, A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 5, 271290
O'Gorman, L (1996) Subpixel precision of straight-edged shapes for registration and measurement. IEEE Trans. Pattern Anal. Mach. Intell., 18, 746751 (doi: 10.1109/34.506796)
Paul, F (2008) Calculation of glacier elevation changes with SRTM: is there an elevation dependent bias? J. Glaciol., 54, 945946 (doi: 10.3189/002214308787779960)
Paul, F and Andreassen, LM (2009) A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment. J. Glaciol., 55, 607618
Paul, F and Haeberli, W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys. Res. Lett., 35, L21502 (doi: 10.1029/2008GL034718)
Pieczonka, T and Bolch, T (2015) Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery Global Planet. Change, 128, 113 (doi: 10.1016/j.gloplacha.2014.11.014)
Pieczonka, T, Bolch, T and Buchroithner, MF (2011) Generation and evaluation of multi-temporal digital terrain models of the Mt. Everest area from different optical sensors, ISPRS J. Photogram., 66, 927940
Pieczonka, T, Bolch, T, Wei, J and Liu, S (2013) Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens. Environ., 130, 233244
Ragettli, S, Bolch, T and Pellicciotti, F (2016) Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himalaya. Cryosphere, 10, 20752097
Scherler, D, Bookhagen, B and Strecker, MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci., 4, 156159
Shangguan, D and 8 others (2007) Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data. Ann. Glaciol., 46, 204208
Shi, Y, Liu, S, Ye, B, Liu, C and Wang, Z (2008) Concise glacier inventory of China. Shanghai Popular Science Press, Shanghai, China
Shi, Y, Liu, C and Kang, E (2010) The glacier inventory of China. Ann. Glaciol., 50, 14
Smiraglia, C and 5 others (2007) Ongoing variations of Himalayan and Karakoram glaciers as witnesses of global changes: recent studies on selected glaciers. Earth Surface Pro., 10, 235247
Vaughan, D and 13 others (2013) Observations: cryosphere. In Stocker, T, Qin, D, Plattner, G-K, Tignor, M, Allen, S, Boschung, J, Nauels, A, Xia, Y, Bex, V and Midgley, P, eds. Climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 317382
Vögtle, T and Schilling, KJ (1999) Digitizing maps, In: Bähr, H-P and Vögtle, T, eds. GIS for environmental monitoring. Schweizerbart, Stuttgart, Germany, 201216
Wei, JF and 6 others (2014) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann. Glaciol., 55, 213222
Wiltshire, AJ (2014) Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region. Cryosphere, 8, 941958
Yao, T and 14 others (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change, 2, 663667
Yasuda, T and Furuya, M (2013) Short-term glacier velocity changes at west Kunlun Shan, northwest Tibet, detected by synthetic aperture radar data. Remote Sens. Environ., 128, 87106
Yasuda, T and Furuya, M (2015) Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. J. Geophys. Res. Earth Surf., 120, 23932405 (doi: 10.1002/2015JF003511)
Zhang, Z and Jiao, K (1987) Modern glaciers on the south slope of West Kunlun Mountains (in Aksayqin Lake and Guozha Co Lake drainage areas). Bull. Glacier Res., 5, 8591
Zhang, W, An, R, Yang, H and Jiao, K (1989) Conditions of glacier development and some glacial features in the West Kunlun Mountains. Bull. Glacier Res., 7, 4958
Zhang, Z and 6 others (2016) Mass change of glaciers in Muztag Ata–Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data. PLoS ONE, 11, e0147327 (doi: 10.1371/journal.pone.0147327)
Zhou, J, Li, Z and Guo, W (2014) Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data. Environ. Earth Sci., 71, 35813592
Zhou, Y, Li, Z, Li, J, Zhao, R and Ding, X (2018) Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ., 210, 96112


Type Description Title
Supplementary materials

Wang et al. supplementary material
Tables S1-S2 and Figures S1-S2

 Word (2.7 MB)
2.7 MB

Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed