Skip to main content Accessibility help
×
Home

Glacial regime of the highest Tien Shan mountain, Pobeda-Khan Tengry massif

  • Vladimir B. Aizen (a1), Elena M. Aizen (a1), Jeff Dozier (a1), John M. Melack (a1), David D. Sexton (a2) and Victor N. Nesterov (a1)...

Abstract

Major processes controlling the existence of a large sub-continental glacier system were identified on the basis of glaciological, meteorological and isotopic analyses using expeditionary and long-term data. Observations were made on the southern Inylchek glacier located in the Pobeda-Khan Tengry massif, the largest sub-continental glacier system on the northern periphery of central Asia. More than 1200 glaciers with a total area of about 4320 km2 comprise the massif. Melt is for the most part caused by radiation and is most intensive during periods of anticyclonic weather with fohn development. The proportion of solar radiation input in relation to heat balance is more than 90%. Evaporation and condensation are negligible during most times and comprise 7% of heat expenditure. Accumulation was associated with cold cyclonic weather. Four ice-formation zones were identified, the upper boundary of liquid runoff is at 5200 m and the recryslallization zone is above 5900 m. The calculated net glacier mass is negative, −318 kg m−2 a−1, and indicates the degradation of modern Pobeda-Khan Tengry glaciers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacial regime of the highest Tien Shan mountain, Pobeda-Khan Tengry massif
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacial regime of the highest Tien Shan mountain, Pobeda-Khan Tengry massif
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacial regime of the highest Tien Shan mountain, Pobeda-Khan Tengry massif
      Available formats
      ×

Copyright

References

Hide All
Academia Sinica. 1986–87. [Glacier inventory of China. III. Tien Shan mountains.]. Lanzhou, Lanzhou Institute of Glaciology and Cryopedology. [In Chinese.]
Ahlmann,, H. Wison. 1940. The relative influence of precipitation and temperature on glacier regime. Geogr. Ann., 22(3–4), 188205.
Aizen,, V. B. and Aizen,, E. M. 1994a. Features of regime and mass exchange of some glaciers on central Asia periphery. Bull. Glacier Res. 12, 924.
Aizen,, V. B. and Aizen,, E. M. 1994b. Regime and mass energy exchange of Subtropical latitude glaciers under monsoon climatic conditions: Gongga Shan, Sichuan, China. Mt. Res. Dev., 14(2), 101118.
Aizen,, V., Aizen,, E. and Melack,, J. 1995. Characteristics of runoff formation at the Kirgizskiy Alatoo, Tien Shan. International Association of Hydrological Sciences Publication. 228 (Symposium at Boulder 1995 — Biogeochemistry of Seasonally Snow-Covered Catchments), 413430.
Aizen,, V., Aizen,, E., Melack,, J. and Martma,, T. 1996a. Isotopic measurements of precipitation on central Asia glaciers (southeastern Tibetan, northern Himalayas, central Tien Shan). J. Geophys. Res., 101(D4), 91859196.
Aizen,, V. B., Aizen,, E. M. and Melack,, J. M. 1996b. Precipitation, melt and runoff in the northern Tien Shan. J. Hydrol., 186, 229251.
Berg,, L. S. 1938. Osnovy klimatologii [The basis of climatology]. Leningrad, Uchebnaya Literatura.
Cheng, Tong, ed. 1982. Mount Tuomuer scientific expedition. Ürümqi, Academia Sinica. Xijiang Peoples Press.
Dolgushin,, L. D. and Osipova,, G. B. 1980. Ledniki [Glaciers]. Moscow, Priroda Mira.
Epstein,, S. and Mayeda,, T. 1953. Variations of O18 content of waters from natural sources. Geochim. Cosmochim. Acta, 4(5), 213224.
Grudzinskiy,, M. A. 1959. Lednik Zvezdochka [Zvezdochka glacier]. In Pobezhdennyye versh’ny [Vitory/peaks]. Moscow, Geograficheskaya Literatura, 167214.
Higuchi,, K. and Zichu., Xie eds. 1989. Glaciological studies in west Kunlun mountains, 1987. Bull. Glacier Res. 7.
Kazanskiy,, A. B. 1965. O kriticheskom chisle Richardsona [About Richardson’s critical number]. In Fizika atmosferi i оkеаnа [The physics of atmosphere and ocean]. Part I. Moscow, Akademiya Nauk SSSR, 875879.
Kobisheva,, N. V., ed. 1990. Nauchno-priklandoy spravochnik po klimatu SSR: kazakhskaya SSR, Mnogoletniye dannyye [Reference book of climate USSR: Kazakhskaya SSR, kirgiskaya SSR. Long-term data]. Vol. 18, parts 1, 2, 4; Vol. 32, parts 1, 2, 4. Leningrad, Gidrometeoizdat.
Konovalov,, V. G. 1979. Raschet i prognoz layaniya lednikov Sredney Azii [Calculating and forecasting glacier ablation in central Asia]. Leningrad, Gidrometeoizdat.
Krenke,, A. N. 1982. Massoobmen v. lednikovykh sistemakh na territorii SSSR [Mass exchange in glacier systems of the U.S.S.R., Leningrad, Gidrometeoizdat.
Kurowski,, L. 1891. Die Höhe der Schneegrenze mit besonderer Berücksichtigung der Finsteraarhorn-Gruppe. Geogr. Abh., Berl. Univ., 5(1), 119160.
Hong,, Ma Zongchao, Liu and Yifeng., Liu 1992. Energy balance of a snow cover and simulation of snowmelt in the western Tien shan mountains, China. Аnn. Glaciol., 16, 7378.
Monin,, A. S. and Obukhov,, A. M. 1954. Osnovniye kharakteristici turbulentnogo peremeshivaniya v prizemnom sloe atmosferi [Main characteristics of turbulent mixing in atmospheric boundary layer]. Tr. Inst. Geofiz., Akad. Nauk SSSR, 24(151), 317.
Racek,, V. I. 1954. Oledeneniye massiva pika Pobedi [Glaciation of Peak Pobeda massif]. Geogr. Sb., 4, 5981.
Shumskiy,, P. A. 1978. Dynamic glaciology. New Delhi, Amerind Publishing Co.
Zichu,, Xie Benxing,, Zheng Jijun, Li and Yafeng., Shi 1982. [The distribution, features and variations of glaciers in China.] In Proceedings of the Symposium on Glaciology and Cryopedology held by the Geographical Society of China, Lanzhou, November 27. - December 3, 1978. Vol. 1. Beijing, Science Press, 113. [In Chinese.]
zhenniang., Yang 1988. [General situation of research on hydrology of glaciers in China in the last thirty years.] J. Glaciol. Geocryol., 10(3), 256261. [In Chinese.]
Zikin,, E. M. 1962. Mass accumulation in firn glacial zones (method of investigation based on temperature profile). Moscow, ASUSSR Publishing. [In Russian.]

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed