Skip to main content Accessibility help
×
Home

The Geometry of Water Veins and Nodes in Polycrystalline Ice

  • J.F. Nye (a1)

Abstract

Water in polycrystalline ice at its melting point forms a system of veins at the three-grain junctions. The veins join together at nodes, which are the four-grain junctions. The shape of a node, a tetrahedron with non-spherical faces and open corners, is determined completely by the dihedral angle for water in contact with a grain boundary. Using the observed value for this angle, namely 33.6°, the paper computes the tetrahedral shape. This is a surface-tension problem with initially unknown boundaries. The result shows that the ratio of vein volume to node volume is R = 0.072 l/d, where l is the average length of a vein between two nodes, and d is the vein diameter measured between edges. For example, in a specimen of ice grown from the melt in the laboratory R was 18.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Geometry of Water Veins and Nodes in Polycrystalline Ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Geometry of Water Veins and Nodes in Polycrystalline Ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Geometry of Water Veins and Nodes in Polycrystalline Ice
      Available formats
      ×

Copyright

References

Hide All
Berner, W. Bucher, P. Oeschger, H. Stauffer, B. 1977 Analysis and interpretation of gas content and composition in natural ice. International Association of Hydrological Sciences Publication 118 (General Assembly of Grenoble 1975 — Isotopes and Impurities in Snow and Ice), 272284.
Bronshtein, I.N. Semendyayev, K.A.. 1971 A guide–book to mathematics. Frankfurt am Main and Zürich, Verlag Harri Deutsch.
Browman, L.G. 1974 Channels in ice. In Santeford H.S. and J.L. Smith, comps. Advanced concepts and techniques in the study of snow and ice resources. Washington, DC, National Academy of Sciences, 224234.
Duval, P. 1977 The role of the water content on the creep rate of polycrystalline ice. International Association of Hydrological Sciences Publication 118 (General Assembly of Grenoble 1975 — Isotopes and Impurities in Snow and Ice), 2933.
Fowler, A.C. 1984 On the transport of moisture in polythermal glaciers. Geophys. Astrophys. Fluid Dyn., 28, 99140.
Glen, J.W. Homer, D.R. Paren, J.G.. 1977 Water at grain boundaries: its role in the purification of temperate glacier ice. International Association of Hydrological Sciences Publication 118 (General Assembly of Grenoble 1975 — Isotopes and Impurities in Snow and Ice), 263271.
Hantz, D. Lliboutry, L.. 1983 Waterways, ice permeability at depth, and water pressures at Glacier d'Argentière, French Alps. J. Glacial., 29 (102), 227239.
Harrison, W.D. Raymond, C.F.. 1976 Impurities and their distribution in temperate glacier ice. J. Glaciol., 16 (74), 173181.
Langham, E.J. 1974 Phase equilibria of veins in polycrystalline ice. Can. J. Earth Sci., 11 (9), 12801287.
Lliboutry, L. 1971 Permeability, brine content and temperature of temperate ice. J. Glacial., 10 (58), 1529.
Lliboutry, L. 1976 Physical processes in temperate glaciers. J. Glacial., 16 (74), 151158.
Lliboutry, L. 1986 A discussion of Robin’s “heat pump” effect by extending Nye’s model for the sliding of a temperate glacier. Eidg. Tech. Hochschule, Zürich. Versuchsanst. Wasserbau, Hydrol. Glaziol. Mitt., 90, 7477.
McAllen, J.V. 1982 The effect of pressure on the water triple–point temperature. Temp., 5(1), 285290.
Mulvaney, R. Wolff, E.W. Oates, K.. 1988 Sulphuric acid at grain boundaries in Antarctic ice. Nature, 331(6153), 247249.
Nye, J.F. Frank, F.C.. 1973 Hydrology of the intergranular veins in a temperate glacier. International Association of Scientific Hydrology Publication 95 (Symposium at Cambridge 1969 — Hydrology of Glaciers), 157161.
Nye, J.F. Mae, S.. 1972 The effect of non–hydrostatic stress on intergranular water veins and lenses in ice. J. Glaciol., 11(61), 81101.
Raymond, C.F. 1976 Some thermal effects of bubbles in temperate glacier ice. J. Glaciol., 16 (74), 159171.
Raymond, C.F. Harrison, W.D.. 1975 Some observations on the behavior of the liquid and gas phases in temperate glacier ice. J. Glaciol., 14 (71), 213233.
Robin, G.de.Q. 1976 Is the basal ice of a temperate glacier at the pressure melting point? J. Glaciol., 16 (74), 183196.
Smith, C.S. 1948 Grainsphases, and interfaces: an interpretation of microstructure. Trans. Am. Inst. Min. Metall. Eng. Inst. Met. Div., 175, 1551.
Walford, M.E.R. Roberts, D.W. Hill, I.. 1987 Optical measurements of water lenses in ice. J. Glaciol., 33 (114), 159161.
Wolff, E.W. Paren, J.G.. 1984 A two–phase model of electrical conduction in polar ice sheets. J. Geophys. Res., 89 (B11), 94339438.
Wolff, E.W. Mulvaney, R. Oates, K.. 1988 The location of impurities in Antarctic ice. Ann. Glaciol., 11, 194197.

The Geometry of Water Veins and Nodes in Polycrystalline Ice

  • J.F. Nye (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed