Skip to main content Accessibility help

A full Stokes ice-flow model to assist the interpretation of millennial-scale ice cores at the high-Alpine drilling site Colle Gnifetti, Swiss/Italian Alps

  • Carlo Licciulli (a1) (a2), Pascal Bohleber (a2) (a3), Josef Lier (a2) (a3), Olivier Gagliardini (a4), Martin Hoelzle (a5) and Olaf Eisen (a6) (a7)...


The high-Alpine ice-core drilling site Colle Gnifetti (CG), Monte Rosa, Swiss/Italian Alps, provides climate records over the last millennium and beyond. However, the full exploitation of the oldest part of the existing ice cores requires complementary knowledge of the intricate glacio-meteorological settings, including glacier dynamics. Here, we present new ice-flow modeling studies of CG, focused on characterizing the flow at two neighboring drill sites in the eastern part of the glacier. The3-D full Stokes ice-flow model is thermo-mechanically coupled and includes firn rheology, firn densification and enthalpy transport, and is implemented using the finite element software Elmer/Ice. Measurements of surface velocities, accumulation, borehole inclination, density and englacial temperatures are used to validate the model output. We calculate backward trajectories and map the catchment areas. This constrains, for the first time at this site, the so-called upstream effects for the stable water isotope time series of the two ice cores drilled in 2005 and 2013. The model also provides a 3-D age field of the glacier and independent ice-core chronologies for five ice-core sites. Model results are a valuable addition to the existing glaciological and ice-core datasets. This especially concerns the quantitative estimate of upstream conditions affecting the interpretation of the deep ice-core layers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A full Stokes ice-flow model to assist the interpretation of millennial-scale ice cores at the high-Alpine drilling site Colle Gnifetti, Swiss/Italian Alps
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A full Stokes ice-flow model to assist the interpretation of millennial-scale ice cores at the high-Alpine drilling site Colle Gnifetti, Swiss/Italian Alps
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A full Stokes ice-flow model to assist the interpretation of millennial-scale ice cores at the high-Alpine drilling site Colle Gnifetti, Swiss/Italian Alps
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Olaf Eisen, E-mail:


Hide All

Now at: Ca' Foscari University, Venice, Italy.



Hide All
Ahrens, J, Geveci, B and Law, C (2005) ParaView: an end-user tool for large-data visualization. The Visualization Handbook. Elsevier, München, 717731. doi: 10.1016/B978-012387582-2/50038-1.
Alean, J, Haeberli, W and Schädler, B (1983) Snow accumulation, firn temperature and solar radiation in the area of the Colle Gnifetti core drilling site (Monte Rosa, Swiss Alps): distribution patterns and interrelationships. Zeitschrift fuer Gletscherkunde und Glazialgeologie 19(2), 131147.
Armbruster, M (2000) Stratigraphische Datierung hoch-alpiner Eisbohrkerne über die letzten 1000 Jahre (Diploma thesis [in German]). University of Heidelberg, Heidelberg, Germany.
Arnold, DN, Brezzi, F and Fortin, M (1984) A stable finite element for the Stokes equations. Calcolo 21(4), 337344. doi: 10.1007/BF02576171
Aschwanden, A, Bueler, E, Khroulev, C and Blatter, H (2012) An enthalpy formulation for glaciers and ice sheets. Journal of Glaciology 58(209), 441457. doi: 10.3189/2012JoG11J088
Auer, I and 31 others (2007) HISTALP–historical instrumental climatological surface time series of the Greater Alpine Region. International Journal of Climatology 27(1), 1746. doi: 10.1002/joc.1377
Baiocchi, C, Brezzi, F and Franca, LP (1993) Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.). Computer Methods in Applied Mechanics and Engineering 105(1), 125141. doi: 10.1016/0045-7825(93)90119-I
Bauder, A and 7 others (2017) The Swiss Glaciers 2013/14 and 2014/15. The Swiss Glaciers. Glaciological Report 135/136. doi: 10.18752/glrep_135-136
Bohleber, P (2011) Ground-penetrating radar assisted ice core research: the challenge of Alpine glaciers and dielectric ice properties (PhD thesis). University of Heidelberg, Heidelberg, Germany.
Bohleber, P (2019) Alpine ice cores as climate and environmental archives. Oxford Research Encyclopedia of Climate Sciences doi: 10.1093/acrefore/9780190228620.013.743.
Bohleber, P and 5 others (2018) Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. Climate of the Past 14(1), 2137. doi: 10.5194/cp-14-21-2018
Bohleber, P and 10 others (2017) Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field. Cryosphere 11(1), 469482. doi: 10.5194/tc-11-469-2017
Bohleber, P, Wagenbach, D, Schöner, W and Böhm, R (2013) To what extent do water isotope records from low accumulation Alpine ice cores reproduce instrumental temperature series? Tellus Series B, Chemical and Physical Meteorology 65(1), 20148. doi: 10.3402/tellusb.v65i0.20148
Böhlert, R (2005) Glaziologische Untersuchungen auf dem Colle Gnifetti und auf dem Mt. Blanc: Ermittlung der Eisdickenverteilung und interner Schichten mittels Georadar (Diploma thesis [in German]), Mathematisch-Naturwissenschaftliche Fakultät, Geographisches Institut der Universität Zürich.
Bolzan, JF (1985) Ice flow at the Dome C ice divide based on a deep temperature profile. Journal of Geophysical Research: Atmospheres 90(D5), 81118124. doi: 10.1029/JD090iD05p08111
Brezzi, F, Bristeau, MO, Franca, LP, Mallet, M and Rogé, G (1992) A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Computer Methods in Applied Mechanics and Engineering 96(1), 117129. doi: 10.1016/0045-7825(92)90102-P
Brezzi, F, Marini, LD and Süli, E (2004) Discontinuous Galerkin methods for first-order hyperbolic problems. Mathematical Models & Methods in Applied Sciences 14(12), 18931903. doi: 10.1142/S0218202504003866
Cuffey, KM and Paterson, WSB (2010) The Physics of Glaciers. 4th Edition. Cambridge, MA, US: Academic Press.
Diez, A, Eisen, O, Hofstede, C, Bohleber, P and Polom, U (2013) Joint interpretation of explosive and vibroseismic surveys on cold firn for the investigation of ice properties. Annals of Glaciology 54(64), 201210. doi: 10.3189/2013AoG64A200
Donea, J (1984) Recent advances in computational methods for steady and transient transport problems. Nuclear Engineering and Design 80(2), 141162. doi: 10.1016/0029-5493(84)90163-8
Duva, J and Crow, P (1994) Analysis of consolidation of reinforced materials by power-law creep. Mechanics of Materials 17(1), 2532. doi: 10.1016/0167-6636(94)90011-6
Eisen, O, Nixdorf, U, Keck, L and Wagenbach, D (2003) Alpine ice cores and ground penetrating radar: combined investigations for glaciological and climatic interpretations of a cold Alpine ice body. Tellus Series B, Chemical and Physical Meteorology 55(5), 10071017. doi: 10.3402/tellusb.v55i5.16394
Gagliardini, O, Gillet-Chaulet, F, Durand, G, Vincent, C and Duval, P (2011) Estimating the risk of glacier cavity collapse during artificial drainage: the case of Tête Rousse Glacier. Geophysical Research Letters 38, L10505. doi: 10.1029/2011GL047536.
Gagliardini, O and Meyssonnier, J (1997) Flow simulation of a firn-covered cold glacier. Annals of Glaciology 24, 242248. doi: 10.3189/S0260305500012246
Gagliardini, O and 14 others (2013) Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geoscientific Model Development 6(4), 12991318. doi: 10.5194/gmd-6-1299-2013
Gilbert, A, Gagliardini, O, Vincent, C and Wagnon, P (2014a) A 3-D thermal regime model suitable for cold accumulation zones of polythermal mountain glaciers. Journal of Geophysical Research: Earth Surface 119(9), 18761893. doi: 10.1002/2014JF003199
Gilbert, A and 5 others (2014b) Modeling near-surface firn temperature in a cold accumulation zone (Col du Dôme, French Alps): from a physical to a semi-parameterized approach. Cryosphere 8(2), 689703. doi: 10.5194/tc-8-689-2014
Gilbert, A, Vincent, C, Gagliardini, O, Krug, J and Berthier, E (2015) Assessment of thermal change in cold avalanching glaciers in relation to climate warming. Geophysical Research Letters 42(15), 63826390. doi: 10.1002/2015GL064838
Gillet-Chaulet, F, Gagliardini, O, Meyssonnier, J, Montagnat, M and Castelnau, O (2005) A user-friendly anisotropic flow law for ice-sheet modelling. Journal of Glaciology 51(172), 314. doi: 10.3189/172756505781829584
Greve, R and Blatter, H (2009) Dynamics of Ice Sheets and Glaciers. Springer Science & Business Media, Berlin Heidelberg.
Gudmundsson, GH, Bauder, A, Lüthi, M, Fischer, UH and Funk, M (1999) Estimating rates of basal motion and internal ice deformation from continuous tilt measurements. Annals of Glaciology 28, 247252. doi: 10.3189/172756499781821751
Haeberli, W (1976) Eistemperaturen in den alpen. Zeitschrift fuer Gletscherkunde und Glazialgeologie 11(2), 203220.
Haeberli, W and Funk, M (1991) Borehole temperatures at the Colle Gnifetti core-drilling site (Monte Rosa, Swiss Alps). Journal of Glaciology 37(125), 3746. doi: 10.3189/S0022143000042775
Haeberli, W, Schmid, W and Wagenbach, D (1988) On the geometry, flow and age of firn and ice at the Colle Gnifetti, core drilling site (Monte Rosa, Swiss Alps). Zeitschrift fuer Gletscherkunde und Glazialgeologie 24(1), 119.
Hock, R (1999) A distributed temperature-index ice-and snowmelt model including potential direct solar radiation. Journal of Glaciology 45(149), 101111. doi: 10.3189/S0022143000003087
Hoelzle, M, Darms, G, Lüthi, M and Suter, S (2011) Evidence of accelerated englacial warming in the Monte Rosa area, Switzerland/Italy. Cryosphere 5(1), 231243. doi: 10.5194/tc-5-231-2011
Hoffmann, HM (2016) Micro radiocarbon dating of the particulate organic carbon fraction in Alpine glacier ice: method refinement, critical evaluation and dating applications (PhD thesis). University of Heidelberg, Heidelberg, Germany. doi: 10.11588/heidok.00020712.
Hoffmann, H and 6 others (2018) A new sample preparation system for Micro-14C dating of Glacier ice with a first application to a high alpine ice core from Colle Gnifetti (Switzerland). Radiocarbon 60(2), 517533. doi: 10.1017/RDC.2017.99
Hughes, TJ (1987) Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier–Stokes equations. International Journal for Numerical Methods in Fluids 7(11), 12611275. doi: 10.1002/fld.1650071108
Jenk, TM and 9 others (2009) A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. Journal of Geophysical Research: Atmospheres 114, D14305. doi: 10.1029/2009JD011860
Keck, L (2001) Climate significance of stable isotope records from Alpine ice cores (PhD thesis). University of Heidelberg, Heidelberg, Germany. doi: 10.11588/heidok.00001837.
Kerch, J, Diez, A, Weikusat, I and Eisen, O (2018) Deriving micro-to macro-scale seismic velocities from ice-core c axis orientations. Cryosphere 12(5), 17151734. doi: 10.5194/tc-12-1715-2018
Konrad, H, Bohleber, P, Wagenbach, D, Vincent, C and Eisen, O (2013) Determining the age distribution of Colle Gnifetti, Monte Rosa, Swiss Alps, by combining ice cores, ground-penetrating radar and a simple flow model. Journal of Glaciology 59(213), 179189. doi: 10.3189/2013JoG12J0
Licciulli, C (2018) Full Stokes ice-flow modeling of the high-Alpine glacier saddle Colle Gnifetti, Monte Rosa: flow field characterization for an improved interpretation of the ice-core records (PhD thesis). University of Heidelberg, Heidelberg, Germany. doi: 10.11588/heidok.00023981
Lliboutry, L, Briat, M, Creseveur, M and Pourchet, M (1976) 15 m deep temperatures in the glaciers of Mont Blanc (French Alps). Journal of Glaciology 16(74), 197203. doi: 10.3189/S0022143000031531
Loveluck, CP and 11 others (2018) Alpine ice-core evidence for the transformation of the European monetary system, AD 640–670. Antiquity 92(366), 15711585. doi: 10.15184/aqy.2018.110
Lüthi, MP (2000) Rheology of cold firn and dynamics of a polythermal ice stream (studies on Colle Gnifetti and Jakobshavns Isbrae). Mitt. VAW/ETH 165.
Lüthi, M and Funk, M (2000) Dating of ice cores from a high Alpine glacier with a flow model for cold firn. Annals of Glaciology 31, 6979. doi: 10.3189/172756400781820381
Lüthi, M and Funk, M (2001) Modelling heat flow in a cold, high altitude glacier: interpretation of measurements from Colle Gnifetti, Swiss Alps. Journal of Glaciology 47(157), 314324. doi: 10.3189/172756501781832223
Ma, Y and 5 others (2010) Enhancement factors for grounded ice and ice shelves inferred from an anisotropic ice-flow model. Journal of Glaciology 56(199), 805812. doi: 10.3189/002214310794457209
Moran, M, Greenfield, R, Arcone, S and Delaney, A (2000) Delineation of a complexly dipping temperate glacier bed using short-pulse radar arrays. Journal of Glaciology 46(153), 274286. doi: 10.3189/172756500781832882
More, AF and 10 others (2017) Next-generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: insights from the Black Death. Geohealth 1(4), 211219. doi: 10.1002/2017GH000064
Polom, U, Hofstede, C, Diez, A and Eisen, O (2014) First glacier-vibroseismic experiment – results from cold firn of Colle Gnifetti. Near Surface Geophysics 12(4), 493504. doi: 10.3997/1873-0604.2013059
Preunkert, S, Wagenbach, D, Legrand, M and Vincent, C (2000) Col du Dôme (Mt Blanc Massif, French Alps) suitability for ice-core studies in relation with past atmospheric chemistry over Europe. Tellus Series B, Chemical and Physical Meteorology 52(3), 9931012. doi: 10.3402/tellusb.v52i3.17081
Preunkert, S and 9 others (2019) Lead and antimony in basal ice from Col du Dome (French Alps) dated with radiocarbon: a record of pollution during antiquity. Geophysical Research Letters 46(9), 49534961. doi: 10.1029/2019GL082641
Ryser, C (2014) Cold ice in an alpine glacier and ice dynamics at the margin of the Greenland Ice Sheet. Mitt. VAW/ETH 226. doi: 10.3929/ethz-a-010129038.
Ryser, C and 7 others (2014) Sustained high basal motion of the Greenland ice sheet revealed by borehole deformation. Journal of Glaciology 60(222), 647660. doi: 10.3189/2014JoG13J196
Schöner, W, Auer, I, Böhm, R, Keck, L and Wagenbach, D (2002) Spatial representativity of air-temperature information from instrumental and ice-core-based isotope records in the European Alps. Annals of Glaciology 35, 157161. doi: 10.3189/172756402781816717
Suter, S (2002) Cold firn and ice in the Monte Rosa and Mont Blanc areas: spatial occurrence, surface energy balance and climatic evidence. Mitt. VAW/ETH 172. doi: 10.3929/ethz-a-004288434.
Suter, S, Laternser, M, Haeberli, W, Frauenfelder, R and Hoelzle, M (2001) Cold firn and ice of high-altitude glaciers in the Alps: measurements and distribution modelling. Journal of Glaciology 47(156), 8596. doi: 10.3189/172756501781832566
Thevenon, F, Anselmetti, FS, Bernasconi, SM and Schwikowski, M (2009) Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. Journal of Geophysical Research: Atmospheres 114, D17102. doi: 10.1029/2008JD011490.
Vincent, C, Vallon, M, Pinglot, J, Funk, M and Reynaud, L (1997) Snow accumulation and ice flow at Dôme du Goûter (4300 m), Mont Blanc, French Alps. Journal of Glaciology 43(145), 513521. doi: 10.3189/S0022143000035127
Wagenbach, D (1992) Special problems of mid-latitude glacier ice-core research. Greenhouse Gases, Isotopes and Trace Elements in Glaciers as Climatic Evidence of the Holocene, vol. Arbeitsheft No. 14 of ‘Report of the ESF/EPC Workshop, Zürich 27–28 October 1992’.
Wagenbach, D, Bohleber, P and Preunkert, S (2012) Cold, alpine ice bodies revisited: what may we learn from their impurity and isotope content? Geografiska Annaler Series A Physical Geography 94(2), 245263. doi: 10.1111/j.1468-0459.2012.00461.x
Wagner, S (1996) Dreidimensionale Modellierung zweier Gletscher und Deformationsanalyse von eisreichem Permafrost. Mitt. VAW/ETH 146.
Yen, YC (1981) Review of thermal properties of snow, ice and sea ice (No. CRREL-81-10). Cold Regions Research and Engineering Laboratory, Hanover N. H.
Zekollari, H, Huybrechts, P, Fürst, J, Rybak, O and Eisen, O (2013) Calibration of a higher-order 3-D ice-flow model of the Morteratsch glacier complex, Engadin, Switzerland. Annals of Glaciology 54(63), 343351. doi: 10.3189/2013AoG63A434
Zwinger, T, Greve, R, Gagliardini, O, Shiraiwa, T and Lyly, M (2007) A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka. Annals of Glaciology 45, 2937. doi: 10.3189/172756407782282543


Related content

Powered by UNSILO

A full Stokes ice-flow model to assist the interpretation of millennial-scale ice cores at the high-Alpine drilling site Colle Gnifetti, Swiss/Italian Alps

  • Carlo Licciulli (a1) (a2), Pascal Bohleber (a2) (a3), Josef Lier (a2) (a3), Olivier Gagliardini (a4), Martin Hoelzle (a5) and Olaf Eisen (a6) (a7)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.