Skip to main content Accessibility help
×
Home

Friction of a Steel Ball on a Single Crystal of Ice

  • Katutosi Tusima (a1)

Abstract

This paper presents the results of a study carried out to explain the low friction on ice. Friction of a steel ball on a single crystal of ice was measured as a function of load, velocity, temperature, and diameter of slider. It was found that even when the velocity was very small (1.5 - 10-7 to 1.8-10–3 m/s) the coefficient of friction was very small ranging from 0.005 to 0.2, although friction on the prismatic plane was twice as large as that on the basal plane. The coefficient of friction increased with load, which means that Amonton’s classical law of friction is not applicable to ice. The coefficient of friction increased with decreasing velocity, which may result from the creep of ice in the contact area. The friction strongly increased as the temperature became close to °C. A minimum friction was observed for a definite temperature. It was found that the explanation of the results obtained is given satisfactorily neither by the classic pressure-melting theory nor by the friction-melting theory, but only by adhesion theory.

Résumé

Frottement d’une bilk d’acier sur la surface d’un monocristal de glace. Ce papier présente les résultats d’une étude ayant pour but d’expliquer le faible frottement de la glace. Le frottement d’une bille d’acier sur un monocristal de glace est mesuré en fonction de la charge, de la vitesse, de la température et du diamètre de la bille. On a trouvé que, mème lorsque la vitesse était très foible (1,5 × 10-7 a 7,4 × 10-3 m/s, le coefficient de friction était très petit allant de 0,005 à 0,2, bien que la friction sur la face prismatique soit deux fois plus forte que sur la face de base. Le coefficient de friction croît avec l’augmentation de la charge ce qui signifie que la loi classique de friction d’Amonton n’est pas applicable à la glace. Le coefficient croit lorsque la vitesse de glissement est réduite ce qui peut ètre dû au fluage de la glace sur la zone de contact. Le frottement augmente considerablement lorsque la température de la glace se rapproche de 0°C. Un minimum de frottement est observé pour une température qui a été définie. On a trouvé que l’explication des résultats obtenus dans la présente expérience n’est donnée de manière satisfaisante ni par la théorie classique pression-fusion, ni par la théorie frottement-fusion, mais seulement par la théorie de l’adhésion.

Zusammenfassung

Reibung einer Stahlkugel auf der Oberfläche von Eis-Einkristallen. Diese Arbeit vermittelt die Ergebnisse einer Untersuchung, mit der die niedrige Reibung von Eis. Die Reibung einer Stahlkugel auf einem Eis-Einkristall wurde in Abhängigkeit der Last, Geschwindigkeit, Temperatur und des Durchmessers der Kugel gemessen. Es zeigte sich, dass selbst wenn die Gleitgeschwindigkeit sehr klein war (1,5 × 10-7 bis 1,8 × 10-3 m/s) der Reibungskoeffizient sehr klein und zwar im Bereich zwischen 0,005 und 0,2 war; auf der prismatischen Ebene war die Reibung allerdings doppelt so gross wie auf der Basisebene. Der Reibungskoeffizient wuchs mit der Last, was bedeutet, dass das klassische Reibungsgesetz von Arnonton auf Eis nicht anwendbar ist. Der Koeffizient wuchs, wenn die Gleitgcschwindigkeit verringert wurde, was auf das Kriechen des Eises an der Kontaktfläche zurückzuführen sein mag. Die Reibung nahm stark zu. wenn die Temperatur sich 0°C näherte. Ein Minimum der Reibung wurde für eine gewisse Temperatur beobachtet. Es zeigte sich, dass die gewonnenen Ergebnisse weder durch die klassische Druckschmelztheorie noch durch die Reibungsschmelztheorie, sondern nur durch die Adhäsionstheorie befriedigend erklärt werden können.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Friction of a Steel Ball on a Single Crystal of Ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Friction of a Steel Ball on a Single Crystal of Ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Friction of a Steel Ball on a Single Crystal of Ice
      Available formats
      ×

Copyright

References

Hide All
Barnes,, P., and others. 1971. Friction and creep of polycrystalline ice, by P. Barnes, D. Tabor and J. C. F, Walker Proceedings of the Royal Society of London Ser. A, Vol. 324, No. 1557, p. 12755 .
Bowden,, F. P. 1953. Friction on snow and ice. Proceedings of the Royal Society of London Ser. A, Vol. 217, No. 1131, p. 46278 .
Bowden,, F. P. 1955. Friction on snow and ice and the development of some fast-running skis. Nature Vol. 176, No. 4490. p. 94647 .
Bowden,, F. P., and Hughes,, T. P. 1939. The mechanism of sliding on ice and snow. Proceedings of the Royal Society of London Ser. A, Vol. 172, No. 949, p. 28098 .
Bowden,, F. P., and Tabor,, D. 1950. The friction and lubrication of solids. Oxford, Clarendon Press.
Butkovich,, T. R. 1954. Hardness of single ice crystals. U.S. Snow, Ice and Permafrost Research Establishment. Research Paper 9.
Evans,, D. C. B., and others. 1976. The kinetic friction of ice, by D. G. B. Evans, J. F. Nye and K. J. Cheeseman. Proceedings of the Royal Society of London Ser. A, Vol. 347, No. 1651, p. 493512 .
Huzioka, T. [i.e. Fujioka], 1962. Yukizori no teiko. V [Studies on the resistance of snow sledge. V]. Teionkagaku: Low Temperature Science Ser. A, [No.] 20, p. 15979 .
Huzioka, T. [i.e. Fujioka], 1963. Yukizori no teiko. VI [Studies on the resistance of snow sledge. VI]. Teionkagaku: Low Temperature Science Ser. A, [No.] 21, p. 3144 .
Joly,, J. 1887. The phenomena of skating and Professor J, Thomson-s thermodynamic relation. Scientific Proceedings of the Royal Dublin Society New Series, Vol. 5, Pt. 6. p. 45354 .
Mantis,, H. T., ed. 1951. Review of the properties of snow and ice. U.S. Snow, Ice and Permafrost Research Establishment. Report 4.
Niven,, C. D. 1956. On the friction of heated sleigh runners on ice under high loading. Canadian Journal of Technology Vol. 34, No. 4, p. 22731 .
Niven,, C. D. 1959. A proposed mechanism for ice friction. Canadian Journal of Physics Vol. 37, No. 3, p. 24755 .
Pfalzner,, P. M. 1947. The friction of heated sleigh runners on ice. Canadian Journal of Research Section F, Vol. 25, No. 4, p. 19295 .
Raraty,, L. E., and Tabor,, D. 1958. The adhesion and strength properties of ice. Proceedings of the Royal Society of London Ser. A, Vol. 245, No. 1241, p. 184201 .
Reynolds,, O. 1899. On the slipperiness of ice. Memoirs and Proceedings of the Manchester Literary and Philosophical Society Vol. 43, Pt, 2, No. 5.
Schultz,, H. H., and Knappwost,, A. 1968. Die Festkörperreibung des Eises als Relaxationseffekt. Wear Vol. 11, No. 1, p. 320 .
Shimbo,, M. 1961. The mechanism of sliding on snow. Union Gésique et Géophysique Internationale. Association Internationale d-Hydrologie Scientifique. Assemblée générale de Helsinki, 25-7______6-8 1960. Commission des Neiges et Glaces, p. 10106 . (Publication No. 54. de l-Association Internationale d-Hydrologie Scientifique.)
Tabor,, D. 1961. Friction and adhesion between metals and other solids. In Eley,, D. D., ed. Adhesion. London, Oxford University Press, p. 11536 .)
Tabor,, D., and Walker,, J. C. F. 1970. Creep and friction of ice. Nature. Vol. 228, No. 5267, p. 13739 .
Tusima, K., [i.e. Tsushima], and Fuji, 1973. Kōri no sendan kyōdo no sokutei [Measurements of shear strength of ice]. Teion-kagaku: Low Temperature Science Ser. A, [No.] 31, p. 3343 .
Tusima, K., [i.e. Tsushima], and Yosida,, Z. [i.e. Yoshida, J.] 1969. Kōri no masatu y__kai [Melting of ice by friction]. Teion-kagaku: Low Temperature Science Ser. A, [No.] 27, p. 1730 .
Barnes,, P., and others. 1971. Friction and creep of polycrystalline ice, by P. Barnes, D. Tabor and J. C. F. Walker. Proceedings of the Royal Society of London Ser. A, Vol. 324, No. 1557, p. 12755 .
Rasmussen,, K. 1925. Fra Granland til Stillehavel: rejser og mennesker fra 5. Thule-Ekspedition 1921-24. [Bd. 1.] Kabenhavn, Gyldendalske Boghandel, Nordisk Forlag.

Friction of a Steel Ball on a Single Crystal of Ice

  • Katutosi Tusima (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed