Skip to main content Accessibility help
×
Home

Formation processes of basal ice at Hamna Glacier, Sôya Coast, East Antarctica, inferred by detailed co-isotopic analyses

  • Yoshinori Iizuka (a1), Hiroshi Satake (a2), Takayuki Shiraiwa (a1) and Renji Naruse (a1)

Abstract

Debris-laden basal ice is exposed along an ice cliff near Hamna Glacier, Sôya Coast, East Antarctica. The basal ice is about 6.8 m thick and shows conspicuous stratigraphic features. The upper 5.5 m consists of alternating layers of bubble-free and bubbly ice. δ values of the bubble-free ice layers are enriched by 2.4 ±1.0‰ (standard deviation) for δ 18O compared to values of neighboring bubbly ice layers above, and slopes of δ 18O vs δD are close to 8. Such layers are suggested to have been formed by refreezing of meltwater in an open system. In contrast, part of the bubbly ice layers shows neutral profiles for stable isotopes, suggesting that these ice masses are undisturbed ice-sheet ice which was not affected by melting and freezing. The massive alternating layers are thus considered to have been formed by folding of refrozen and non-melted layers. The lower 1.3 m consists predominantly of bubble-free massive ice. The profile of co-isotopic values shows a change of about 3.0‰ for δ 18O at the interface between bubble-free and bubbly ice. Since the isotopic change occurred over a wider thickness than the upper 5.5 m, the basal ice is suggested to have been formed by refreezing of meltwater on a larger scale than the upper 5.5 m.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Formation processes of basal ice at Hamna Glacier, Sôya Coast, East Antarctica, inferred by detailed co-isotopic analyses
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Formation processes of basal ice at Hamna Glacier, Sôya Coast, East Antarctica, inferred by detailed co-isotopic analyses
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Formation processes of basal ice at Hamna Glacier, Sôya Coast, East Antarctica, inferred by detailed co-isotopic analyses
      Available formats
      ×

Copyright

References

Hide All
Alley, R. B., Lawson, D. E., Evenson, E. B., Strasser, J. C. and Larson, G. J.. 1998. Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice. II. Theory. J. Glaciol., 44(148), 563569.
Boulton, G. S. 1972. The role of thermal régime in glacial sedimentation. In Price, R. J. and Sugden, D.E., comps. Polargeomorphology. London, Institute of British Geographers, 119.
Bouzette, A. and Souchez, R.. 1999. Katabatic wind influence on meltwater supply to fuel glacier–substrate interactions at the grounding line, Terra Nova Bay, East Antarctica. Ann. Glaciol., 28, 272276.
Craig, H. 1961. Isotopic variations in meteoric waters. Science, 133(3465), 17021703.
Fitzsimons, S. J. 1996. Formation of thrust-block moraines at the margins of dry-based glaciers, south Victoria Land, Antarctica. Ann. Glaciol., 22, 6874.
Goodwin, I. D. 1993. Basal ice accretion and debris entrainment within the coastal ice margin, Law Dome, Antarctica. J. Glaciol., 39(131), 157166.
Gow, A. J., Epstein, S. and Sheehy, W.. 1979. On the origin of stratified debris in ice cores from the bottom of the Antarctic ice sheet. J. Glaciol., 23(89), 185192.
Hansen, I. and Greve, R.. 1996. Polythermal modelling of steady states of the Antarctic ice sheet in comparison with the real world. Ann. Glaciol., 23, 382387.
Hubbard, B. 1991. Freezing-rate effects on the physical characteristics of basal ice formed by net adfreezing. J. Glaciol, 37(127), 339347.
Hubbard, B. and Sharp, M.. 1993. Weertman regelation, multiple refreezing events and the isotopic evolution of the basal ice layer. J. Glaciol., 39(132), 275291.
Hubbard, B. and Sharp, M.. 1995. Basal ice facies and their formation in the western Alps. Arct. Alp. Res., 27(4), 301310.
Hubbard, B., Tison, J.-L., Janssens, L. and Spiro, B.. 2000. Ice-core evidence of the thickness and character of clear-facies basal ice: Glacier de Transfleuron, Switzerland. J. Glaciol, 46(152), 140150.
Jansson, P., Kohler, J. and Pohjola, V. A.. 1996. Characteristics of basal ice at Engabreen, northern Norway. Ann. Glaciol., 22, 114120.
Jouzel, J. and Souchez, R. A.. 1982. Melting–refreezing at the glacier sole and the isotopic composition of the ice. J. Glaciol., 28(98), 3542.
Kato, K. 1979. [Oxygen isotopic composition of fallen snow in Antarctica.] Antarct. Rec. 67, 124135. [Injapanese with English summary.]
Kizaki, K. 1962. Icefabric studies on Hamna ice fall and Honhörbrygga Glacier, Antarctica. Antarct. Rec. 16, 5474.
Kluiving, S. J., Bartek, L. R. and van der Wateren, F. M.. 1999. Multi-scale analyses of subglacial and glaciomarine deposits from the Ross Sea continental shelf, Antarctica. Ann. Glaciol., 28, 9096.
Knight, P. G. 1987. Observations at the edge of the Greenland ice sheet: boundary condition implications for modellers. International Association of Hydrological Sciences Publication 170 (Symposium at Vancouver 1987 — The Physical Basis of Ice Sheet Modelling), 359366.
Knight, P. G. 1994. Two-facies interpretation of the basal layer of the Greenland ice sheet contributes to a unified model ofbasal ice formation. Geology, 22(11), 971974.
Lawson, D. E. 1979. Sedimentological analysis of the western terminus region of the Matanuska Glacier, Alaska. CRREL Rep. 79-9.
Lawson, D. E., Strasser, J. C., Evenson, E. B., Alley, R. B., Larson, G. J. and Arcone, S. A.. 1998. Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice. I. Field evidence. J. Glaciol., 44(148), 547562.
Lehmann, M. and Siegenthaler, U.. 1991. Equilibrium oxygen- and hydrogenisotope fractionation between ice and water. J. Glaciol., 37(125), 2326.
Lliboutry, L. 1993. Internal melting and ice accretion at the bottom of temperate glaciers. J. Glaciol, 39(131), 5064.
Mae, S. and Naruse, R.. 1978. Possible causes of ice sheet thinning in the Mizuho Plateau. Nature, 273(5660), 291293.
Mae, S. and Yoshida, M.. 1987. Airborne radio echo-sounding in Shirase Glacier drainage basin, Antarctica. Ann. Glaciol., 9, 160165.
Ohba, T. and Hirabayashi, J.. 1996. Handling of Pt catalyst in H2-H2O equilibration method for D/H measurement of water. Geochem. J., 30, 373377.
O’Neil, J. R. 1968. Hydrogen and oxygen isotope fractionation between ice and water. J. Phys. Chem., 72(10), 36833684.
Robin, G. de Q. 1976. Is the basal ice of a temperate glacier at the pressure melting point? J. Glaciol., 16(74), 183196.
Satow, K. and Watanabe, O.. 1992. Distributionofmean δ 18O values ofsurface snow layers and their dependence on air temperature in Enderby Land–East Queen Maud Land, Antarctica. Proc. NIPR Symp. Polar Meteorol. Glaciol. 5, 120127.
Shoemaker, E. M. 1990. A subglacial boundary-layer regelation mechanism. J. Glaciol, 36(124), 263268.
Souchez, R. A. and de Groote, J. M.. 1985. δD–δ 18O relationships in ice formed by subglacial freezing: paleoclimatic implications. J. Glaciol., 31(109), 229232.
Souchez, R. A. and Jouzel, J.. 1984. On the isotopic composition in δD and δ 18O of water and ice during freezing. J. Glaciol., 30(106), 369372.
Souchez, R., Tison, J.-L. and Jouzel, J.. 1987. Freezing rate determination by the isotopic composition of the ice. Geophys. Res. Lett., 14(6), 599602.
Souchez, R. and 8 others. 1994. Stable isotopes in the basal silty ice preserved in the Greenland ice sheet at Summit: environmental implications. Geophys. Res. Lett., 21(8), 693696.
Sugden, D. E. and 6 others. 1987. Evidencefor two zones ofdebris entrainment beneath the Greenland ice sheet. Nature, 328(6127), 238241.
Tison, J.-L. and Lorrain, R. D.. 1987. A mechanism of basal ice-layer formation involving major ice–fabric changes. J. Glaciol., 33(113), 4750.
Tison, J.-L., Petit, J.-R., Barnola, J.-M. and Mahaney, W. C.. 1993. Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adélie, Antarctica). J. Glaciol, 39(132), 303315.
Weertman, J. 1964. The theory of glacier sliding. J. Glaciol., 5(39), 287303.
Zdanowicz, C. M., Michel, F. A. and Shilts, W. W.. 1996. Basal debris entrainment and transport in glaciers of southwestern Bylot Island, Canadian Arctic. Ann. Glaciol., 22, 107113.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed