Skip to main content Accessibility help
×
Home

Flow dynamics of tidewater glaciers: a numerical modelling approach

  • Andreas Vieli (a1) (a2), Martin Funk (a2) and Heinz Blatter (a1)

Abstract

The dynamics of grounded tidewater glaciers is investigated with a time-dependent numerical flow model, which solves the full equations for the stress and velocity fields and includes a water-pressure-dependent sliding law. The calving criterion implemented in the model shifts the calving front at each time-step to the position where the frontal ice thickness exceeds flotation height by a prescribed value. With this model, the linear relation between calving rate and water depth proposed on empirical grounds is qualitatively reproduced for the situation of a slowly retreating or advancing terminus, but not for situations of rapid changes. Length changes of tidewater glaciers, i.e. especially rapid changes, are dominantly controlled by the bed topography and are to a minor degree a direct reaction to a mass-balance change. Thus, accurate information on the near-terminus bed topography is required for reliable prediction of the terminus changes due to climate changes. The results also confirm the suggested cycles of slow advance and rapid retreat through a basal depression. Rapid changes in terminus positions preferably occur in places where the bed slopes upwards in the ice-flow direction.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Flow dynamics of tidewater glaciers: a numerical modelling approach
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Flow dynamics of tidewater glaciers: a numerical modelling approach
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Flow dynamics of tidewater glaciers: a numerical modelling approach
      Available formats
      ×

Copyright

References

Hide All
Albrecht, O., Jansson, P. and Blatter, H.. 2000. Modelling glacier response to measured mass-balance forcing. Ann. Glaciol., 31, 9196.
Bindschadler, R. 1983. The importance of pressurized subglacial water in separation and sliding at the glacier bed. J. Glaciol., 29(101), 319.
Bindschadler, R. A. and Rasmussen, L. A.. 1983. Finite-difference model predictions of the drastic retreat of Columbia Glacier, Alaska. U.S. Geol. Surv. Prof. Pap. 1258-D.
Broecker, W. S. 1994. Massive iceberg discharges as triggers for global climate change. Nature, 372(6505), 421424.
Brown, C. S., Meier, M. F. and Post, A.. 1982. Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier. U.S. Geol. Surv. Prof Pap. 1258-C.
Budd, W. F., Keage, P. L. and Blundy, N. A.. 1979. Empirical studies of ice sliding. J. Glaciol., 23(89), 157170.
Clarke, G. K. C. 1987. Fast glacier flow: ice streams, surging and tidewater glaciers. J. Geophys. Res., 92(B9),88358841.
Dickson, D. 1978. Glacier “retreat” threatens Alaskan oil tanker route. Nature, 273, 8889.
El-Tahan, M., Venkatesh, S. and El-Tahan, H.. 1987.Validation and quantitative assessment of the deterioration mechanisms of arctic icebergs. J. Offshore Mech. Arct. Eng., 109(1), 102108.
Fischer, M. P. and Powell, R. D.. 1998. A simple model for the influence of push-morainal banks on the calving and stability of glacial tidewater termini. J. Glaciol., 44(146), 3141.
Funk, M. and Bösch, H.. Unpublished. Gletscher-Kalbungsgeschwindigkeit im Süsswasser: eine Studie am Nordbogletscher im johan Dahl Land, SüdWest Grönland. Zürich, Eidgenössischen Technischen Hochschule. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie. (Bericht 20.8.)
Funk, M. and Röthlisberger, H.. 1989. Forecasting the effects of a planned reservoir which will partially flood the tongue of Unteraargletscher in Switzerland. Ann. Glaciol., 13, 7681.
Glen, J. W. 1955. The creep of polycrystalline ice. Proc. R. Soc. London, Ser. A, 228(1175), 519538.
Gudmundsson, G. H. 1999. A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland. J. Glaciol., 45(150), 219230.
Heinrich, H. 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res., 29(2), 142152.
Holdsworth, G. 1978. Some mechanisms for the calving of icebergs. In Husseiny, A.A., ed. Iceberg utilization. New York, Pergamon Press, 160175.
Hooke, R.Le B., Laumann, T. and Kennett, M. I.. 1989. Austdalsbreen, Norway: expected reaction to a 40 m increase in water level in the lake into which the glacier calves. Cold Reg. Sci. Technol, 17(2), 113126.
Hubbard, A., Blatter, H., Nienow, P., Mair, D. and Hubbard, B.. 1998. Comparison of a three-dimensional model for glacier flow with field data from Haut Glacier d’Arolla, Switzerland. J. Glaciol., 44(147), 368378.
Hughes, T. 1992. Theoretical calving rates from glaciers along ice walls grounded in water of variable depths. J. Glaciol., 38(129), 282294.
Hunter, L. E., Powell, R. D. and Lawson, D. E.. 1996. Morainal-bank sediment budgets and their influence on the stability of tidewater termini of valley glaciers entering Glacier Bay, Alaska, U.S.A. Ann. Glaciol., 22, 211216.
Iken, A. 1981. The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model. J. Glaciol., 27(97), 407421.
Jania, J. 1988. Dynamiczne procesy glacjalne na poludniowym Spitsbergenie (w swietle badan fotointerpretacyjnych i fotogrametrycznych) [Dynamic glacial processes in south Spitsbergen (in the light of photointerpretation and photogrammetric research) ] Katowice, Uniwersytet Slaski. (Prace Naukowe Uniwersytetu Slaskiego w Katowicach 955.)
Jania, J. and Kaczmarska, M.. 1997. Hans Glacier — a tidewater glacier in southern Spitzbergen: summary of some results. Byrd Polar Res. Cent. Rep. 15, 95104.
Jansson, P. 1995. Water pressure and basal sliding on Storglaciären, northern Sweden. J. Glaciol, 41(138), 232240.
Kamb, B., Engelhardt, H., Fahnestock, M. A., Humphrey, N., Meier, M. and Stone, D.. 1994. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 2. Interpretation. J. Geophys. Res., 99(B8), 15,23115,244.
Kirkbride, M. P. and Warren, C. R.. 1997. Calving processes at a grounded ice cliff. Ann. Glaciol., 24, 116121.
Krimmel, R. M. 1992. Photogrammetric determinations of surface altitude, velocity, and calving rate of Columbia Glacier, Alaska, 1983–91. U.S. Geol. Surv. Open File Rep. 92-104.
Krimmel, R. M. and Vaughn, B. H.. 1987. Columbia Glacier, Alaska: changes in velocity 1977–1986. J. Geophys. Res., 92(B9), 89618968.
Leysinger, G. 1998. Numerisches Blockgletschermodell in zwei Dimensionen. (Diploma thesis, ETH Zurich.Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie.)
MARC Analysis Research Corp. 1997. MARC/MENTAT user′s manual. K7 edition. Palo Alto, CA, MARC Analysis Research Corporation.
Mayo, L. R. 1989. Advance of Hubbard Glacier and 1986 outburst of Russell Fiord, Alaska, U.S.A. Ann. Glaciol., 13, 189194.
Meier, M. F. 1994. Columbia Glacier during rapid retreat: interactions between glacier flow and iceberg calving dynamics. In Reeh, N., ed. Report of a Workshop on “The Calving Rate of the West Greenland Glaciers in Response to Climate Change”, Copenhagen, 13–15 September 1993. Copenhagen, Danish Polar Center, 6383.
Meier, M. F. 1997. The iceberg discharge process: observations and inferences drawn from the study of Columbia Glacier. Byrd Polar Res. Cent. Rep. 15, 109114.
Meier, M. F. and Post, A.. 1987. Fast tidewater glaciers. J. Geophys. Res., 92(B9), 90519058.
Meier, M. and 9 others. 1994. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 1. Observations. J. Geophys. Res., 99(B8), 15,21915,229.
Motyka, R. J. 1997. Taku Glacier: advance and growth of a tidewater glacier. Byrd Polar Res. Cent. Rep. 15, 119120.
Motyka, R. J. and Post, A.. 1995. Taku Glacier: influence of sedimentation, accumulation to total area ratio, and channel geometry on the advance of afjord-typeglacier. In Ekstrom, D. R., ed. Third Glacier Bay Science Symposium, 14–18 September 1993. Proceedings. Anchorage, AK, National Park Service, 3845.
Naruse, R., Skvarca, P. and Takeuchi, Y.. 1997. Thinning and retreat of Glaciar Upsala, and an estimate of annual ablation changes in southern Patagonia. Ann. Glaciol., 24, 3842.
Paterson, W. S. B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Pelto, M. S. and Warren, C. R.. 1991. Relationship between tidewater glacier calving velocity and water depth at the calving front. Ann. Glaciol., 15, 115118.
Powell, R. D. 1988. Processes and facies of temperate and sub-polar glaciers with tide-water fronts. Boulder, CO, Geological Society of America. (Geological Society of America Short Course Notes.)
Powell, R. D. 1991. Grounding-line systems as second-order controls on fluctuations of tidewater termini of temperate glaciers. In Anderson, J. B. and Ashley, G. M., eds. Glacial marine sedimentation; paleoclimatic significance. Boulder, CO, Geological Societyof America,7593. (GSA Special Paper 261.)
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.. 1996. Numerical recipes in FORTRAN 77: the art of scientific computing. Second edition. Cambridge, Cambridge University Press.
Rasmussen, L. A. and Meier, M. F.. 1982. Continuity equation model of the predicted drastic retreat of Columbia Glacier, Alaska. U.S. Geol. Surv. Prof. Pap. 1258-A, A1A23.
Reeh, N. 1968. On the calving of ice from floating glaciers and ice shelves. J. Glaciol., 7(50), 215232.
Rott, H., Stuefer, M., Siegel, A., Skvarca, P. and Eckstaller, A.. 1998. Mass fluxes and dynamics of Moreno Glacier, Southern Patagonia Icefield. Geophys. Res. Lett., 25(9), 14071410.
Sikonia, W. G. 1982. Finite-element glacier dynamics model applied to Columbia Glacier, Alaska. U.S. Geol. Surv. Prof Pap. 1258-B.
Van der Veen, C. J. 1996. Tidewater calving. J. Glaciol., 42(141), 375385.
Van der Veen, C. J., ed. 1997a. Calving glaciers: report of a Workshop, February 28-March 2,1997, Columbus, OH. Byrd Polar Res. Cent. Rep. 15.
Van der Veen, C. J. 1997b. Controls on the position of iceberg-calving. In Van der Veen, C. J., ed. Calving glaciers: report of a Workshop, February 28–March 2, 1997, Columbus, OH. Columbus, OH, Ohio State University. Byrd Polar Research Center, 163172. (Report 15.)
Van der Veen, C. J. 1998. Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Reg. Sci. Technol., 27(1), 3147.
Venteris, E. R. 1999. Rapid tidewater glacier retreat: a comparison between Columbia Glacier, Alaska and Patagoniancalvingglaciers. Global Planet. Change, 22(1–4), 131138.
Vieli, A., Funk, M. and Blatter, H.. 2000. Tidewater glaciers: frontal flow acceleration and basal sliding. Ann. Glaciol., 31, 217221.
Warren, C. R. 1993. Rapid recent fluctuations of the calving San Rafael Glacier, Chilean Patagonia: climatic or non-climatic? Geogr. Ann., 75A(3), 111125.
Warren, C. R., Glasser, N. F., Harrison, S., Winchester, V., Kerr, A. R. and Rivera, A.. 1995a. Characteristics of tide-water calving at Glaciar San Rafael, Chile. J. Glaciol., 41(138), 273289. (Erratum: 41 (139), p. 281.)
Warren, C. R., Greene, D. R. and Glasser, N. F.. 1995b. Glaciar Upsala, Patagonia: rapid calving retreat in fresh water. Ann. Glaciol., 21, 311316.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed