Skip to main content Accessibility help

Flow dynamics and iceberg calving rates of Devon Ice Cap, Nunavut, Canada

  • David O. Burgess (a1), Martin J. Sharp (a1), Douglas W.F. Mair (a2), Julian A. Dowdeswell (a3) and Toby J. Benham (a3)...


The surface velocity field of Devon Ice Cap, Nunavut, Canada, was mapped using interferometric synthetic aperture radar (InSAR). Ascending European Remote-sensing Satellite 1 and 2 (ERS-1/-2) tandem mode data were used for the western and southeast sectors, and 3 day repeat pass ERS-1 imagery for the northeast sector. Speckle-tracking procedures were used with RADARSAT 1 imagery to obtain surface velocities over the terminus of Belcher Glacier (a major calving front) where decorrelation between ERS data occurred. The InSAR data highlight a significant contrast in ice-flow dynamics between the east and west sides of the ice cap. Ice movement west of the main north–south divide is dominated by relatively uniform ‘sheet’ flow, but three fast-flowing outlet glaciers that extend 14–23km beyond the ice-cap margin also drain this region. Several outlet glaciers that extend up to 60 km inland from the eastern margin drain the eastern side of the ice cap. The dominant ice-flow regimes were classified based on the relationship between the driving stress (averaged over a length scale of ten ice thicknesses) and the ratio of surface velocity to ice thickness. The mapped distribution of flow regimes appears to depict the spatial extent of basal sliding across the ice cap. This is supported by a close relationship between the occurrence of flow stripes on the ice surface and flow regimes where basal sliding was found to be an important component of the glacier motion. Iceberg calving rates were computed using measured surface velocities and ice thicknesses derived from airborne radio-echo sounding. The volume of ice calved between 1960 and 1999 was estimated to be 20.5 ± 4.7 km3 (or 0.57 km3 a–1). Approximately 89% of this loss occurred along the eastern margin. The largest single source is Belcher Glacier, which accounts for ~50% of the total amount of ice calved.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Flow dynamics and iceberg calving rates of Devon Ice Cap, Nunavut, Canada
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Flow dynamics and iceberg calving rates of Devon Ice Cap, Nunavut, Canada
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Flow dynamics and iceberg calving rates of Devon Ice Cap, Nunavut, Canada
      Available formats



Hide All
Alt, B.T. 1978 Synoptic climate controls of mass-balance variations on Devon Island Ice Cap. Arct. Alp. Res., 10(1), 6180.
Bentley, C.R. 1987 Antarctic ice streams: a review. J. Geophys. Res., 92(B9), 88438858.
Bingham, R.G., Nienow, P.W. and Sharp, M.J.. 2003 Intra-annual and intra-seasonal flow dynamics of a High Arctic polythermal valley glacier. Ann. Glaciol., 37, 181188.
Boon, S. and Sharp, M.. 2003 The role of hydrologically-driven ice fracture in drainage system evolution on an Arctic glacier. Geophys. Res. Lett., 30(18). (10.1029/2003GL018034.)
Budd, W.F. and Smith, I.N.. 1981 The growth and retreat of ice sheets in response to orbital radiation changes. International Association of Hytdological Sciences Publication 131 (Symposium at Canberra 1979Sea Level, Ice and Climatic Change), 369409.
Burgess, D.O. and Sharp, M.J.. 2004 Recent changes in areal extent of the Devon ice cap, Nunavut, Canada. Arct. Antarct. Alp. Res., 36(2), 261271.
Cooper, A.P.R., McIntyre, N.F. and de, G. Robin., Q. 1982 Driving stresses in the Antarctic ice sheet. Ann. Glaciol., 3, 5964.
Copland, L. and Sharp, M.. 2001 Mapping thermal and hydrological conditions beneath a polythermal glacier with radioecho sounding. J. Glaciol., 47(157), 232242.
Copland, L., Sharp, M.J. and Dowdeswell, J.A.. 2003a. The distribution and flow characteristics of surge-type glaciers in the Canadian High Arctic. Ann. Glaciol., 36, 7381.
Copland, L., Sharp, M.J. Nienow, P.W. and Bingham, R.G.. 2003b. The distribution of basal motion beneath a High Arctic polythermal glacier. J. Glaciol., 49(166), 407414.
Cress, P. and Wyness, R.. 1961 Observations of glacial movements. Arctic, 14(4), 257259.
Cumming, I. and Zhang, J.. 2000 Measuring the 3-D flow of the Lowell Glacier with InSAR. In Fringe ’99: Second ESA International Workshop on ERS SAR Interferometry, Lie`ge, Belgium, 10–12 November 1999. European Space Agency, 19.
Dowdeswell, J.A. and Williams, M.. 1997 Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery. J. Glaciol., 43(145), 489494.
Dowdeswell, J.A. and 10 others. 2002 Form and flow of the Academy of Sciences ice cap, Severnaya Zemlya, Russian High Arctic. J. Geophys. Res., 107(B4). (10.1029/2000JB000129.)
Dowdeswell, J.A., Benham, T.J. Gorman, M.R. Burgess, D. and Sharp, M.. 2004 Form and flow of the Devon Island ice cap, Canadian Arctic. J. Geophys. Res., 109(F02002). (10.1029/2003JF000095.)
Gabriel, A.K., Goldstein, R.M. and Zebker, H.A.. 1989 Mapping small elevation changes over large areas: differential radar interferometry. J. Geophys. Res., 94(B7), 91839191.
Gray, L., Short, N., Mattar, K.E. and Jezek, K.C.. 2001 Velocities and flux of the Filchner Ice Shelf and its tributaries determined from speckle tracking interferometry. Can. J. Remote Sensing, 27(3), 193206.
Gudmundsson, G.H., Raymond, C.F. and Bindschadler, R.. 1998 The origin and longevity of flow stripes on Antarctic ice streams. Ann. Glaciol., 27, 145152.
Gudmundsson, G.H., Adalgeirsdóttir, G. and Björnsson., H. 2003 Observational verification of predicted increase in bedrock-to-surface amplitude transfer during a glacier surge. Ann. Glaciol., 36, 9196.
Iken, A. 1972 Measurements of water pressure in moulins as part of a movement study of the White Glacier, Axel Heiberg Island, Northwest Territories, Canada. J. Glaciol., 11(61), 5358.
Joughin, I. 2002 Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann. Glaciol., 34, 195201.
Joughin, I., Kwok, R. and Fahnestock, M.. 1996 Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland. J. Glaciol., 42(142), 564575.
Koerner, R.M. 1970 The mass balance of the Devon Island ice cap, Northwest Territories, Canada, 1961–66. J. Glaciol., 9(57), 325336.
Mair, D.W.F., Burgess, D.O. and Sharp, M.J.. 2004 Thirty-seven year mass balance of the Devon Ice Cap, Nunavut, Canada determined by shallow ice coring and melt modelling. J. Geophys Res. 110(F01011). (doi: 10.1029/2003JF000099.)
Massonnet, D. and Feigl, K.L.. 1998 Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys., 36(4), 441500.
McIntyre, N.F. 1985 The dynamics of ice-sheet outlets. J. Glaciol., 31(108), 99107.
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Truffer, M. and Echelmeyer, K.A.. 2003 Of isbræ and ice streams. Ann. Glaciol., 36, 6672.
Unwin, B.V. 1998. Arctic ice cap velocity variations revealed using ERS SAR interferometry. (PhD thesis, University College London.)
Vachon, P.W., Geudtner, D., Mattar, K., Gray, A.L. Brugman, M. and Cumming., I. 1996 Differential SAR interferometry measurements of Athabasca and Saskatchewan glacier flow rate. Can. J.Remote Sensing, 22(3), 287296.
Webb, F.H. and Zumberge, J.F.. 1995. An introduction to GIPSY/OASIS-II. Pasadena, CA, California Institute of Technology. US National Aeronautics and Space Administration. Jet Propulsion Laboratory.
Zebker, H.A., Rosen, P.A. Goldstein, R.M. Gabriel, A. and Werner, C.L.. 1994 On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake. J. Geophys. Res., 99(B10), 1961719634.
Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J. and Steffen., K. 2002 Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218222.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed