Skip to main content Accessibility help
×
×
Home

Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA

  • Eleanor S. Boyce (a1), Roman J. Motyka (a1) and Martin Truffer (a1)

Abstract

Mendenhall Glacier is a lake-calving glacier in southeastern Alaska, USA, that is experiencing substantial thinning and increasingly rapid recession. Long-term mass wastage linked to climatic trends is responsible for thinning of the lower glacier and leaving the terminus vulnerable to buoyancy-driven calving and accelerated retreat. Bedrock topography has played a major role in stabilizing the terminus between periods of rapid calving and retreat. Lake-terminating glaciers form a population distinct from both tidewater glaciers and polar ice tongues, with some similarities to both groups. Lacustrine termini experience fewer perturbations (e.g. tidal flexure, high subaqueous melt rates) and are therefore inherently more stable than tidewater termini. At Mendenhall, rapid thinning and simultaneous retreat into a deeper basin led to flotation conditions along approximately 50% of the calving front. This unstable terminus geometry lasted for approximately 2 years and culminated in large-scale calving and terminus collapse during summer 2004. Buoyancy-driven calving events and terminus break-up can result from small, rapidly applied perturbations in lake level.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA
      Available formats
      ×

Copyright

References

Hide All
Arendt, A.A., Echelmeyer, K.A., Harrison, W.D., Lingle, C.S. and Valentine, V.B. 2002. Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297(5580), 382386.
Arendt, A. and 7 others. 2006 Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods. J. Geophys. Res., 111 (F3), F03019. (10.1029/2005JF000436.).
Bøggild, C.E., Olesen, O.B., Ahlstrøm, A.P. and Jørgensen, P. 2004. Automatic glacier ablation measurements using pressure transducers. J. Glaciol., 50(169), 303304.
Boyce, E. 2006. Instability and retreat of a lake-calving terminus, Mendenhall Glacier, Southeast Alaska. (MS thesis, University of Alaska Fairbanks.)
Brown, C.S., Meier, M.F. and Post, A.. 1982 Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier. USGS Prof. Pap., 1258-C.
Cutler, P.M., Mickelson, D.M., Colgan, P.M., MacAyeal, D.R. and Parizek, B.R. 2001. Influence of the Great Lakes on the dynamics of the southern Laurentide Ice Sheet: numerical experiments. Geology, 29(11), 10391042.
Echelmeyer, K., Harrison, W.D., Clarke, T.S. and Benson, C. 1992. Surficial glaciology of Jakobshavns Isbræ, West Greenland: Part II. Ablation, accumulation and temperature. J. Glaciol., 38(128), 169181.
Echelmeyer, K.A. and 8 others. 1996 Airborne surface profiling of glaciers: a case-study in Alaska. J. Glaciol., 42(142), 538547.
Elsberg, D.H., Harrison, W.D., Echelmeyer, K.A. and Krimmel, R.M. 2001. Quantifying the effects of climate and surface change on glacier mass balance. J. Glaciol., 47(159), 649658.
Funk, M. and Röthlisberger, H. 1989 Forecasting the effects of a planned reservoir which will partially flood the tongue of Unteraargletscher in Switzerland. Ann. Glaciol., 13, 7681.
Harrison, W.D., Echelmeyer, K.A., Cosgrove, D.M. and Raymond, C.F. 1992. The determination of glacier speed by time-lapse photography under unfavourable conditions. J. Glaciol., 38(129), 257265.
Krimmel, R.M. and Rasmussen, L.A.. 1986 Using sequential photography to estimate ice velocity at the terminus of Columbia Glacier, Alaska. Ann. Glaciol., 8, 117123.
Larsen, C.F., Motyka, R.J., Arendt, A.A., Echelmeyer, K.A. and Geissler, P.E. 2007. Glacier changes in southeast Alaska and contribution to sea level rise. J. Geophys. Res., 112(F1), F01007. (10.1029/2006JF000586.)
Meier, M.F. and Post, A.. 1987 Fast tidewater glaciers. J. Geophys. Res., 92(B9), 90519058.
Motyka, R.J., O’Neel, S., Connor, C.L. and Echelmeyer, K.A.. 2002 20th century thinning of Mendenhall Glacier, Alaska, and its relationship to climate, lake calving, and glacier run-off. Global Planet. Change, 35(1–2), 93112.
Motyka, R.J., Hunter, L., Echelmeyer, K.A. and Connor, C.. 2003 Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36, 5765.
Naruse, R. and Skvarca, P.. 2000 Dynamic features of thinning and retreating Glaciar Upsala, a lacustrine calving glacier in southern Patagonia. Arct. Antarct. Alp. Res., 32(4), 485491.
O’Neel, S., Echelmeyer, K.A. and Motyka, R.J.. 2003 Short-term variations in calving of a tidewater glacier: LeConte Glacier, Alaska, U.S.A. J. Glaciol., 49(167), 587598.
Østrem, G. and Brugman, M.. 1991. Glacier mass-balance measurements. A manual for field and office work. Saskatoon, Sask., Environment Canada. . (NHRI Science Report 4.)
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Post, A. and Motyka, R.J.. 1995 Taku and LeConte Glaciers, Alaska: calving-speed control of Late-Holocene asynchronous advances and retreats. Progr. Phys. Geog., 16(1), 5982.
Rignot, E., Braaten, D., Gogineni, P., Krabill, W.B. and McConnell, J.R.. 2004 Rapid ice discharge from southeast Greenland glaciers. Geophys. Res. Lett., 31(L10), L10401. (10.1029/2004GL019474.)
Röhl, K. 2006 Thermo-erosional notch development at fresh-watercalving Tasman Glacier, New Zealand. J. Glaciol., 52(177), 203213.
Van der Veen, C.J. 1996 Tidewater calving. J. Glaciol., 42(141), 375385.
Van der Veen, C.J. 2002 Calving glaciers. Progr. Phys. Geogr., 26(1), 96122.
Venteris, E.R. 1999 Rapid tidewater glacier retreat: a comparison between Columbia Glacier, Alaska and Patagonian calving glaciers. Global Planet. Change, 22(1–4), 131138.
Warren, C. and Aniya, M.. 1999 The calving glaciers of southern South America. Global Planet. Change, 22(1–4), 5977.
Warren, C.R., Greene, D.R. and Glasser, N.F.. 1995 Glaciar Upsala, Patagonia: rapid calving retreat in fresh water. Ann. Glaciol., 21, 311316.
Warren, C., Benn, D., Winchester, V. and Harrison, S.. 2001 Buoyancy-driven lacustrine calving, Glaciar Nef, Chilean Patagonia. J. Glaciol., 47(156), 135146.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed