Skip to main content Accessibility help
×
Home

Extreme snow metamorphism in the Allan Hills, Antarctica, as an analogue for glacial conditions with implications for stable isotope composition

  • Ruzica Dadic (a1), Martin Schneebeli (a2), Nancy A.N. Bertler (a1) (a3), Margit Schwikowski (a4) and Margret Matzl (a2)...

Abstract

Understanding physical processes in near-zero accumulation areas can help us to better understand polar ice-core records, particularly during periods when accumulation rates were lower than today. We report measurements from a 5 m firn core from the Allan Hills, Antarctica, which include physical properties using computer tomography, stable isotope ratios δD and δ18O, and 210Pb activity. The core shows a highly metamorphosed firn with homogeneous and stable structure, but with discrete layers near the surface. The observed firn structure is caused by a combination of unique depositional and post-depositional processes. The irregular δD and δ18O signal does not follow the stratigraphic sequence and implies post-depositional modification caused by microscopic pressure gradients in the firn that can result from either forced ventilation over rough surfaces in the presence of wind or alternating temperature-gradients between the firn and the atmosphere. Our results also indicate impact snow deposition under high winds and with a high initial density and air exchange between the atmosphere and the snowpack.210Pb activity below 0.3 m falls below the detection limit, implying that most of the core is more than 100 years old. We conclude that the Allan Hills record provides a unique opportunity to investigate important processes that would have affected ice-core records from glacial periods.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Extreme snow metamorphism in the Allan Hills, Antarctica, as an analogue for glacial conditions with implications for stable isotope composition
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Extreme snow metamorphism in the Allan Hills, Antarctica, as an analogue for glacial conditions with implications for stable isotope composition
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Extreme snow metamorphism in the Allan Hills, Antarctica, as an analogue for glacial conditions with implications for stable isotope composition
      Available formats
      ×

Copyright

Corresponding author

Correspondence: Ruzica Dadic <ruzica.dadic@vuw.ac.nz>

References

Hide All
Albert, MR (2002) Effects of snow and firn ventilation on sublimation rates. Ann. Glaciol., 35, 5256 (doi: 10.3189/172756402781817194)
Albert, MR, Shuman, CA, Courville, ZR, Bauer, R, Fahnestock, MA and Scambos, TA (2004) Extreme firn metamorphism: impact of decades of vapor transport on near-surface firn at a low-accumulation glazed site on the East Antarctic plateau. Ann. Glaciol., 39, 7378 (doi: 10.3189/172756404781814041)
Barnola, JM, Pimienta, P, Raynaud, D and Korotkevich, S (1991) CO2-climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus B, 43(2), 8390
Bertler, NAN, Mayewski, PA and Carter, L (2011) Cold conditions in Antarctica during the Little Ice Age - implications for abrupt climate change mechanisms. Earth Planet. Sci. Lett., 308(1–2), 415 (doi: 10.1016/j.epsl.2011.05.021)
Bindschadler, R and 8 others (2008) The LANDSAT mosaic image of Antarctica. Remote Sens. Environ., 112(12), 42144226 (doi: 10.1016/j.rse.2008.07.006)
Bintanja, R (1999). On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev. Geophys., 37(3), 337359 (doi: 10.1029/1999RG900007)
Bintanja, R and Reijmer, CH (2001) Meteorological conditions over Antarctic blue ice areas and their influence on the local surface mass balance. J. Glaciol., 47(156), 3750 (doi: 10.3189/172756501781832557)
Bintanja, R and Van den Broeke, MR (1995) The surface energy balance of Antarctic snow and blue ice. J. Appl. Meteorolol, 34, 902926 (doi: 10.1175/1520–0450(1995)034<0902:TSE-BOA>2.0.CO;2)
Brandt, RE and Warren, SG (1993) Solar heating rates and temperature profiles in Antarctic snow and ice. J. Glaciol., 39, 99110
Brandt, RE and Warren, SG (1997) Temperature measurements and heat transfer in near-surface snow at the South Pole. J. Glaciol., 43(144)
Cappa, CD, Hendricks, MB, DePaolo, DJ and Cohe, RC (2003) Isotopic fractionation of water during evaporation. J. Geophys.Res., 108, D164525 (doi: 10.1029/2003JD003597)
Cassidy, WA, Harvey, RP, Schutt, J, Delisle, G and Yanai, K (1992) The meteorite collection sites of Antarctica. Meteoritics, 27, 490525
Colbeck, SC (1989) Air movement in snow due to windpumping. J. Glaciol., 35(120), 209213
Courville, ZR, Albert, MR, Fahnestock, MA, Cathles, IV LM and Shuman, CA (2007) Impacts of an accumulation hiatus on the physical properties of firn at a low-accumulation polar site. J. Geophys. Res., 112, F02030 (doi: 10.1029/2005JF000429)
Craig, H (1961) Isotopic variations in meteoric waters. Science, 113, 17021703
Crozaz, G, Picciotto, E and De Bruick, W (1964) Antarctic snow chronology with Pb210 . J. Geophys. Res., 69(12), 25962604
Cuffey, KM and Steig, EJ (1998) Isotopic diffusion in polar firn: implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland. J. Glaciol., 44(147), 273284
Cuffey, KM, Clow, GD, Alley, RB, Stuiver, M, Waddington, ED and Saltus, RW (1995) Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science, 270(5235), 455458 (doi: 10.1126/science.270.5235.455)
Cunningham, J and Waddington, ED (1993) Air flow and dry deposition of non-sea salt sulfate in polar firn: paleoclimatic implications. Atmos. Environ., 27A(17–18), 29432956 (doi: 10.1016/0960-1686(93)90327-U)
Dadic, R, Mullen, PC, Schneebeli, M, Brandt, RE and Warren, SG (2013) Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the Transantarctic Mountains: implications for sea-glaciers on Snowball Earth. J. Geophys. Res., 118, 16581676 (doi: 10.1002/jgrf.20098)
Dahe, Q, Petit, JR, Jouzel, J and Stievenard, M (1994) Distribution of stable isotopes in surface snow along the route of the 1990 international Trans-Antarctica expedition. J. Glaciol., 40(134), 107118
Dansgaard, W (1964) Stable isotopes in precipitation. Tellus, 16(4), 436468
Delmotte, M, Masson, V and Jouzel, J (2000) A seasonal deuterium excess signal at Law Dome, coastal Antarctica: a Southern Ocean signature. J. Geophys. Res., 105(D6), 71877197 (doi: 10.1029/1999JD901085)
Ekaykin, AA, Lipenkov, VY, Barkov, NI, Petit, JR and Masson-Delmotte, V (2002) Spatial and temporal variability in isotope composition of recent snow in the vicinity of Vostok station, Antarctica: implications for ice-core record interpretation Ann. Glaciol., 16 181186 (doi: 10.3189/172756402781816726)
Ekaykin, AA, Hondoh, T, Lipenkov, VY and Mayamoto, A (2009) Post-depositional changes in snow isotope content: preliminary results of laboratory experiments. Climate Past Discuss., 5, 22392267 (doi: 10.5194/cpd-5-2239-2009)
EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623628 (doi: 10.1038/nature02599)
Epstein, S, Sharp, RP and Gow, AJ (1965) 6-year record of oxygen and hydrogen isotope variations in South Pole firn. J. Geophys. Res., 70(8), 18091814 (doi: 10.1029/JZ070i008p01809)
Friedman, I, Benson, CS and Gleason, J (1991) Isotopic changes during snow metamorphism. In Taylor, HP, O’Neill, JR and Kaplan, IR eds Stable isotope geochemistry: a tribute to Samuel Epstein. (Special Publication 3) Geochemical Society, San Antonio, TX, 211221
Gäggeler, HW, Von Gunten, HR, Oeschger, H and Schotterer, U (1983) 210Pb-dating of cold alpine firn/ice cores from Colle Gnifetti, Switzerland. J. Glaciol., 29(101), 165177
Harvey, RP and 6 others (1998) Meteoritic event recorded in Antarctic ice. Geology, 26, 607610
Heggli, M, Frei, E and Schneebeli, M (2009) Snow replica method for three-dimensional X-ray microtomographic imaging. J. Glaciol., 55(192), 631639 (doi: 10.3189/002214309789470932)
Hildebrand, T and Rüegsegger, P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc., 185(1), 6775 (doi: 10.1046/j.1365-2818.1997.1340694.x)
Johnsen, J, Clausen, HB, Cuffey, KM, Hoffmann, G, Schwander, J and Creyts, TT (2000) Diffusion of stable isotopes in polar firn: the isotope effect firn diffusion. In Hondoh, T ed. Physics of ice core records. Hokkaido University Press, Sapporo, 121140
Jouzel, J, Koster, RD, Suozzo, RJ, Russel, GL, White, JCW and Broecker, WS (1991) Simulations of the HDO and H2 18O atmospheric cycles using the NASA Giss General Circulation model – sensitivity experiments for present-day conditions. J. Geophys. Res. Atmos., 96(D4), 74957507 (doi: 10.1029/90JD02663)
Jouzel, J and 12 others (1997) Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res. Oceans, 102(C12), 26 47126 487 (doi: 10.1029/97JC01283)
Jouzel, J and 31 others (2007a) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793796 (doi: 10.1126/science.1141038)
Jouzel, J and 8 others (2007b) The GRIP deuterium-excess record. Quat. Sci. Rev., 26, 117 (doi:10.1016/j.quascirev.2006.07.015)
Kavanaugh, JL and Cuffey, KM (2003) Space and time variation of δ18O and δD in Antarctic precipitation revisited. Global Biogeochem. Cycles, 17(1) (doi: 10.1029/2002GB001910)
Langway, CC Jr (1967) Stratigraphic analysis of a deep ice core from Greenland. CCREL Res. Rep. 77
Lorius, C and Merlivat, L (1977) Distribution of mean surface stable isotope value in East Antarctica: observed changes with depth in the coastal area. IAHS Publ. 118, 127137
Luz, B, Barkan, E, Yam, R and Shemesh, A (2009) Fractionation of oxygen and hydrogen isotopes in evaporating water. Geochim. Cosmochim. Acta, 73, 66976703 (doi: 10.1016/j.gca.2009.08.008)
McConnell, JR, Bales, RC, Stewart, RW, Thompson, AM, Albert, MR and Ramos, R (1998) Physically based modeling of atmosphere-to-firn transfer of H2O2 at South Pole. J. Geophys. Res., 103(D9), 1056110570
Masson-Delmotte, V and 25 others (2006) Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Climate Dyn., 27(4), 513529 (doi: 10.1007/s00382-005-0081-9)
Masson-Delmotte, V and 40 others (2008) A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling. J. Climate, 21(13), 33593387 (doi: 10.1175/2007JCLI2139.1)
Masson-Delmotte, V and 22 others (2010) Abrupt change of Antarctic moisture origin at the end of Termination II. Proc. Natl Acad. Sci. USA, 107(27), 12 09112 094 (doi: 10.1073/pnas.0914536107)
Merlivat, L (1978) Molecular diffusivities of H2O16O, HD16O, and H2O18O in gases. J.Chem. Phys., 69(6), 28642871
Merlivat, L and Jouzel, J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res., 84(NC8), 50295033 (doi: 10.1029/JC084iC08p05029)
Morse, DL and 7 others (1999) Accumulation rate measurements at Taylor Dome, East Antarctica: techniques and strategies for mass balance measurements in polar environments. Geogr. Ann. A, 81(4), 683694
Moser, H and Stichler, W (1974) Deuterium and oxygen-18 contents as an index of the properties of snow covers. IAHS Publ. 114 (Symposium at Grindelwald 1974 – Snow Mechanics), 122135
Neumann, TA (2003) Effects of firn ventilation on geochemistry of polar snow. (PhD thesis, University of Washington)
Neumann, TA and Waddington, ED (2004) Effects of firn ventilation on isotopic exchange. J. Glaciol., 50(169), 183194 (doi: 10.3189/172756504781830150)
Orsi, AJ, Cornuelle, BD and Severinghaus, JP (2012) Little Ice Age cold interval in West Antarctica: evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide. Geophys. Res. Lett., 39, L09710 (doi: 10.1029/2012GL051260)
Parrenin, F and 9 others (2013) Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science, 339(6123), 10601063 (doi: 10.1126/science.1226368)
Pfeffer, WT and Mrugala, R (2002) Temperature gradient and initial snow density as controlling factors in the formation and structure of hard depth hoar. J. Glaciol., 48(163), 485494 (doi: 10.3189/172756502781831098)
Pinzer, B and Schneebeli, M (2009) Snow metamorphism under alternating temperature gradients: morphology and recrystallization on surface snow. Geophys. Res. Lett., 36, L23503 (doi: 10.1029/2009GL039618)
Pinzer, B, Schneebeli, M and Kaempfer, TU (2012) Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse microtopography. Cryosphere, 6, 11411155 (doi: 10.5194/tc-6-1141-2012)
Sanak, J and Lambert, G (1977) Lead 210 of climatic changes at South Pole. Geophys. Res. Lett., 4(9), 367359
Satake, H and Kawada, H (1997) The quantitative evaluation of sublimation and the estimation of original hydrogen and oxygen isotope ratios of a firn core at East Queen Maud Land Antarctica. Bull. Glacier Res., 15, 9397
Scarchilli, C, Frezzotti, M and Ruti, PM (2010) Snow precipitation at four ice core sites in East Antarctica: provenance, seasonality and blocking factors. Climate Dyn., 37(9), 21072125
Schneebeli, M and Sokratov, SA (2004) Tomography of temperature gradient metamorphism in snow and changes in heat conductivity. Hydrol. Process., 18, 36553665 (doi: 10.1002/hyp.5800)
Severinghaus, JP and 12 others (2010) Deep air convection in the firn at a zero-accumulation site, central Antarctica. Earth Planet. Sci. Lett., 293, 359367 (doi:10.1016/j.epsl.2010.03.003)
Sokratov, SA and Golubev, VN (2009) Snow isotopic content change by sublimation. J. Glaciol., 55(193), 823828 (doi: 10.3189/002214309790152456)
Sommerfeld, RA, Friedman, I and Nilles, M (1987) The fractionation of natural isotopes during temperature gradient metamosphism. In Jones, HG and Orville-Thomas, WJ eds Seasonal snow covers: physics, chemistry, hydrology. (NATO ASI Series 211) Springer, Dordrecht, 95105
Sommerfeld, RA, Judy, C and Friedman, I (1991) Isotopic change during the formation of depth hoar in experimental snowpacks. In Taylor, HP, O’Neill, JR and Kaplan, IR eds Stable isotope geochemistry: a tribute to Samuel Epstein. (Special Publication 3) Geochemical Society, San Antonio, TX, 205209
Spaulding, NE and 7 others (2012) Ice motion and mass balance at the Allan Hills blue ice area, Antarctica, with implications for paleoclimate reconstructions. J. Glaciol., 58(208), 399406 (doi: 10.3189/2012JoG11J176)
Spaulding, NE and 9 others (2013) Climate archives from 90 to 250 ka in horizontal and vertical ice cores from the Allan Hills Blue Ice Area, Antarctica. Quat. Res., 80, 562574 (doi: 10.1016/j.yqres.2013.07.004)
Steen-Larsen, HC and 18 others (2014) What controls the isotopic composition of Greenland surface snow? Climate Past, 10(1), 377392
Steig, EJ and 8 others (1998) Synchronous climate changes in Antarctica and the North Atlantic. Science, 282(5386), 9295 (doi: 10.1126/science.282.5386.92)
Steig, EJ and 7 others (2000) Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geogr. Ann. A, 82A(2–3), 213235 (doi: 10.1111/j.0435-3676.2000.00122.x)
Stichler, WU and 6 others (2001) Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes. J. Geophys. Res. Atmos., 106(D19), 22 61322 620 (doi: 10.1029/2001JD900179)
Suzuki, T, Kamiyama, K, Furukawa, T and Fujii, Y (2004) Lead-210 profile in firn layer over Antarctic ice sheet and its relation to the snow accumulation environment. Tellus, 56B, 8592 (doi: 10.1111/j.1600-0889.2004.00089.x)
Town, MS, Warren, SG, Walden, VP and Waddington, ED (2008) Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets. J. Geophys. Res., 113, D24303 (doi:10.1029/2008JD009852)
Vimeux, F and 7 others (2001) Holocene hydrological cycle changes in the Southern Hemisphere documented in East Antarctic deuterium excess records. Climate Dyn., 17(7), 503513 (doi: 10.1007/PL00007928)
Waddington, ED, Cunningham, J and Harder, SL (1996) The effects of snow ventilation on chemical concentrations. In Wolff, E and Bales, RC eds Chemical exchange between the atmosphere and polar snow. Springer Verlag, Berlin and Heidelberg, 403451
Waddington, ED, Steig, EJ and Neumann, TA (2002) Using characteristic times to assess whether stable isotopes in polar snow can be reversibly deposited. Ann. Glaciol., 35, 118124 (doi: 10.3189/172756402781817004)
Whillans, IM and Cassidy, WA (1983) Catch a falling star: meteorites and old ice. Science, 222, 5557
Whillans, IM and Grootes, PM (1985) Isotopic diffusion in cold snow and firn. J. Geophys. Res., 90(D2), 39103918

Keywords

Extreme snow metamorphism in the Allan Hills, Antarctica, as an analogue for glacial conditions with implications for stable isotope composition

  • Ruzica Dadic (a1), Martin Schneebeli (a2), Nancy A.N. Bertler (a1) (a3), Margit Schwikowski (a4) and Margret Matzl (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed