Skip to main content Accessibility help
×
Home

Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica

  • Andrew G. Fountain (a1), Martyn Tranter (a2), Thomas H. Nylen (a1), Karen J. Lewis (a3) and Derek R. Mueller (a4)...
  • Please note a correction has been issued for this article.

Abstract

Cryoconite holes are water-filled holes in the surface of a glacier caused by enhanced ice melt around trapped sediment. Measurements on the ablation zones of four glaciers in Taylor Valley, Antarctica, show that cryoconite holes cover about 4–6% of the ice surface. They typically vary in diameter from 5 to 145 cm, with depths ranging from 4 to 56 cm. In some cases, huge holes form with 5 m depths and 30 m diameters. Unlike cryoconite holes elsewhere, these have ice lids up to 36 cm thick and melt from within each spring. About one-half of the holes are connected to the near-surface hydrologic system and the remainder are isolated. The duration of isolation, estimated from the chloride accumulation in hole waters, commonly shows ages of several years, with one hole of 10 years. The cryoconite holes in the McMurdo Dry Valleys create a near-surface hydrologic system tens of cm below the ice surface. The glacier surface itself is generally frozen and dry. Comparison of water levels between holes a few meters apart shows independent cycles of water storage and release. Most likely, local freeze–thaw effects control water passage and therefore temporary storage. Rough calculations indicate that the holes generate at least 13% of the observed runoff on the one glacier measured. This hydrologic system represents the transition between a melting ice cover with supraglacial streams and one entirely frozen and absent of water.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica
      Available formats
      ×

Copyright

References

Hide All
Adams, E. E. Priscu, J. C. Fritsen, C. H. Smith, S. R. and Brackman, S. L. 1998. Permanent ice covers of the McMurdo Dry Valley lakes, Antarctica: bubble formation and metamorphism. In Priscu, J. C. ed. Ecosystem dynamic sin apolardesert: the McMurdo Dry Valleys, Antarctica. Washington, DC, American Geophysical Union, 281295. (Antarctic Research Series 72.)
Adhikary, S. Nakawo, M. Seko, K. and Shakya, B. 2000. Dust influence on the melting process of glacier ice: experimental results from Lirung Glacier, Nepal Himalayas. International Association of Hydrological Sciences Publication 264, 4352.
Agassiz, L. 1847. Système glaciaire ou recherches sur les glaciers, leur mécanisme, leur ancienneg extension et le rôle qu’ils ont joué dans l’histoire de la terre. Première partie. Nouvelles études et expériences sur les glaciers actuels: leur structure leur progression, et leur action physique sur le sol. Paris, Victor Masson.
Brandt, R. E. and Warren, S. G. 1993. Solar-heating rates and temperature profiles in Antarctic snow and ice. J. Glaciol., 39(131), 99110.
Bromley, A. M. 1985. Weather observations Wright Valley, Antarctica. Wellington, New Zealand. Meteorological Service.
Chinn, H. T. J. 1981. Hydrology and climate of the Ross Sea area. J. R. Soc. N.Z., 11(4), 373386.
Chinn, H. T. J. 1985. Structure and equilibrium of the Dry Valleys glaciers. New Zealand Antarctic Record, 6, Special Supplement, 7388.
Chinn, T. J. 1993. Physical hydrology of the dry valley lakes. In Green, W. J. and Friedmann, E.I. eds. Physical and biogeochemical processes in Antarctic lakes. Washington, DC, American Geophysical Union, 151. (Antarctic Research Series 59.)
De Smet, W. H. and van Rompu, E. A. 1994. Rotifera and Tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belg. J. Zool., 124(1), 27-37.
Doran, P.T. and 6 others. 2002. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J. Geophys. Res., 107(D24), 112.
Driedger, C. L. 1981. The 1980 eruptions of Mount St. Helens, Washington. Effect of ash thickness on snow ablation. U.S. Geol. Surv. Prof. Pap. 1250, 757760.
Drygalski, E. von. 1897. Die Kryoconitlöcher. In Gronland-Expedition der Gesellschaft für Erdkunde zu Berlin 1891–1893. Vol. 1. Berlin, W. H. Kuhl, 93103.
Fountain, A. G. Dana, G. L. Lewis, K. J. Vaughn, B. H. and McKnight, D. M. 1998. Glaciers of the McMurdo Dry Valleys, southern Victoria Land, Antarctica. In Priscu, J.C. ed. Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. Washington, DC, American Geophysical Union, 6575. (Antarctic Research Series 72.)
Fountain, A. G. and 12 others. 1999a. Physical controls on the Taylor Valley ecosystem, Antarctica. BioScience, 49(12), 961971.
Fountain, A. G. Lewis, K. J. and Doran, P.T. 1999b. Spatial climatic variation and its control on glacier equilibrium line altitude in Taylor Valley, Antarctica. Global Planet. Change, 22(1–4), 110.
Fritsen, C. H. and Priscu, J. C. 1998. Cyanobacterial assemblages in permanent ice covers on Antarctic lakes: distribution, growth rate and temperature response of photosynthesis. J. Phycol., 34(4), 587597.
Gaijda, R.T. 1958. Cryoconite phenomena on the Greenland ice cap in the Thule Area. Can. Geogr., 3(12), 3544.
Gerdel, R.W. and Drouet, F. 1960. The cryoconite of the Thule area, Greenland. Transactions of the American Microscopy Society, 79, 256272.
Gribbon, P.W.F. 1979. Cryoconite holes on Sermikavsak, West Greenland. J. Glaciol., 22(86), 177181.
Grongaard, A. A, P. J. Pugh and McInnes, S. J. 1999. Tardigrades and other cryoconite biota on the Greenland ice sheet. Zoologischer Anzeiger, 238, 211214.
Hobbs, W. H. 1911. Characteristics of existing glaciers. New York, Macmillan Co.
Hoffman, P. F. Kaufman, A. J. Halverson, G.P. and Schrag, D. P. 1998. A Neoproterozoic snowball Earth. Science, 281(5381), 13421346.
Ishikawa, N. and Kobayashi, S. 1985. On the internal melting phenomenon (puddle formation) in fast sea ice, East Antarctica. Ann. Glaciol., 6, 138141.
Kikuchi, Y. 1994. Glaciella, a new genus of freshwater Canthyocamyidae (Cope-poda Harpacticoida) from a glacier in Nepal, Himalayas. Hydrobiologia, 292/293(1), 5966.
Kohshima, S. 1984. A novel cold-tolerant insect found in a Himalayan glacier. Nature, 310(5974), 225227.
Leslie, A. 1879. The Arctic voyages of A. E. Nordenskjöld. London, MacMillan and Co.
Lewis, K. J. 2001. Solar-forced roughening of Antarctic glaciers and the Martian ice caps: how surficial debris and roughness affect glacial melting in Taylor Valley, and how this can be applied to the Martian ice caps. (Ph.D., University of Colorado.)
Lewis, K. J. Fountain, A. G. and Dana, G. L. 1998. Surface energy balance and meltwater production for a Dry Valley glacier, Taylor Valley, Antarctica. Ann. Glaciol., 27, 603609.
Lewis, K. J. Fountain, A. G. and Dana, G. L. 1999. How important is terminus cliff melt?: a study of the Canada Glacier terminus, Taylor Valley, Antarctica. Global Planet. Change, 22(1–4), 105115.
Liston, G. E., Winther, J.-G. Bruland, O. Elvehøy, H. and Sand, K. 1999. Below-surface ice melt on the coastal Antarctic ice sheet. J. Glaciol., 45(150), 273285.
Lyons, W. B. Welch, K. A. Fountain, A. G. Dana, G. L. Vaughn, B. H. and McKnight, D. M. 2003. Surface glaciochemistry of Taylor Valley, southern Victoria Land, Antarctica and its relationship to stream chemistry. Hydrol. Processes, 17, 115130.
Margesin, R. Zacke, G. and Schinner, E. 2002. Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct. Antarct. Alp. Res., 34(1), 8893.
McIntyre, N. F. 1984. Cryoconite hole thermodynamics. Can. J. Earth Sci., 21(2), 152156.
McKnight, D. M. Niyogi, D. K. Alger, A. S. Bomblies, A. Conovitz, P. A. and Tate, C. M. 1999. Dry valley streams in Antarctica: ecosystems waiting for water. BioScience, 49(12), 985995.
Mueller, D. R. Vincent, W. F. Pollard, W. H. and Fritsen, C. H. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia, 123, 173197.
Nansen, F. 1906. Protozoa on the ice-floes of the North Polar Sea. In Nansen, F. ed. The Norwegian North Polar Expedition 1893–1896. London, Longmans, Green and Co.; Christiania, Jacob Dybwad, 122. (Scientific Results, 5(16))
Nisbet, E. G. and Sleep, N. H. 2001. The habitat and nature of early life. Nature, 409(6823), 10831091.
Nobles, L. H. 1960. Glaciological investigations, Nunatarssuaq ice ramp, northwestern Greenland. SIPRE Tech. Rep. 66
Paige, R. A. 1968. Sub-surface melt pools in the McMurdo Ice Shelf, Antarctica. J. Glaciol., 7(51), 511516.
Podgorny, I. A. and Grenfell, T. C. 1996. Absorption of solar energy in a cryoconite hole. Geophys. Res. Lett., 23(18), 24652468.
Porazinska, D. L. Fountain, A. G. Nylen, T. H. Tranter, M. and Virginia, R. A. 2004. The biodiversity and biochemistry of cryoconite holes from McMurdo Dry Valley Glaciers, Antarctica. Arct. Antarct. Alp. Res., 36(1), 8491.
Röthlisberger, H. 1972. Water pressure in intra- and subglacial channels. J. Glaciol., 11(62), 177203.
Säwström, C. Mumford, P. Marshall, W. Hodson, A. and Laybourn-Parry, J. 2002. The microbial communities and primary productivity of cryconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol., 25(8), 591596.
Sharp, R.P. 1949. Studies of superglacial debris on valley glaciers. Am. J. Sci., 247(5), 289315.
Steinböck, O. 1936. Über Kryokonitlöcher und ihre biologische Bedeutung [Cryoconite pits and their biological significance]. Z. Gletscherkd., 24, 121. [In German.]
Takeuchi, N. Kohshima, S. Yoshimura, Y. Seko, K. and Fujita, K. 2000. Characteristics of cryoconite holes on a Himalayan glacier, Yala Glacier central Nepal. Bull. Glaciol. Res., 17, 5159.
Takeuchi, N. Kohshima, S. Shiraiwa, T. and Kubota, K. 2001a. Characteristics of cryoconite (surface dust on glaciers) and surface albedo of a Patagonian glacier, Tyndall Glacier, Southern Patagonia Icefield. Bull. Glaciol. Res., 18, 6569.
Takeuchi, N. Kohshima, S. and Seko, K. 2001b. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct. Antarct. Alp. Res., 33(2), 115122.
Taylor, G. 1916. With Scott: the silver lining. London, Smith, Elder and Co.
Tranter, M. Fountain, A. Fritsen, C. Lyons, B. Statham, P. and Welch, I. 2004. Extreme hydrological conditions in natural microcosms entombed within Antarctic ice. Hydrol. Processes, 18, 379387.
Vincent, W. F. and Howard-Williams, C. 2000. Letters: Life on snowball Earth. Science, 287(5462), 2421.
Wharton, R.A. Jr, McKay, C.P. Simmons, G.M. Jr and Parker, B.C. 1985. Cryoconite holes on glaciers. BioScience, 35(8), 499503.
Wharton, R.A. Jr and Vinyard, W.C. 1983. Distribution of snow and ice algae in western North America. Madroño, 30, 201209.
Wharton, R.A. Jr, Vinyard, W.C. Parker, B.C. Simmons, G.M. Jr and Seaburg, K.G. 1981. Algae in cryoconite holes on Canada Glacier in southern Victoria Land, Antarctica. Phycologia, 20(2), 208211.
Wright, C.S. and Priestley, R.E. 1922. British (Terra Nova) Antarctic Expedition 1910–13. Glaciology. London, Harrison and Sons.
Zellweger, G.W. 1994. Testing and comparison of 4 ionic tracers to measure stream-flow loss by multiple tracer injection. Hydrol. Processes, 8(2), 155165.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: