Skip to main content Accessibility help
×
Home

Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland

  • Ian Joughin (a1), Ron Kwok (a1) and Mark Fahnestock (a2)

Abstract

Satellite radar interferometry provides glaciologists with an important new tool for determining the motion and topography of large ice sheets. We examine the sources of error in interferometrically derived ice-motion measurements, including those errors due to inaccurate estimates of the interfero-metric baseline. Several simulations are used to assess baseline accuracy in terms of tie-point error and the number and distribution of tie points. These results give insight into how best to select tie points, and also demonstrate the level of accuracy that can be achieved. Examination of two representative cases likely to occur in mapping ice-sheet motion leads to the conclusion that with adequate tie-point information ice velocity can be measured accurately to within a few meters per year. A method to correct horizontal velocity estimates for the effect of vertical displacement using surface slopes is also developed. Finally, we estimate the single-component velocity field for an area on Humboldt Glacier, northern Greenland, using interferograms formed from ERS-1 SAR image. We estimatе that these velocity measurements are accurate to within 2.3 m year1.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland
      Available formats
      ×

Copyright

References

Hide All
Fahnestock, M., Bindschadler,, R. Kwok, R. and Jezek, K. 1993. Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science, 262 (5139), 15301534.
Ferrigno,, J.G., Lucchitta,, B.K, Mullins,, K.F, Allison,, A.L, Allen,, R.J and Gould,, W.G. 1993. Velocity measurements and changes in position of Thwaites Glacier/iceberg tongue from aerial photography, Landsat images and NOAA AVHRR data. Ann. Glaciol., 17, 239244.
Gabrial,, A.K., Goldstein,, R. M. and Zebker,, H.A. 1989. Mapping small evevation changes over large areas: differential radar interferometry, J. Geophys. Res., 39(B7), 91839191.
Goldstein,, R.M. 1995. Atmospheric limitationsto repeat-track radar interferometry. Geophys. Res. Lett., 22 (18), 25172520.
Goldstein,, R.M., Zebker,, H.A and Werner,, C.L. 1988. Satellite radar interferometry: two-dimensional phase nwrapping. Radio Sci.,23 (4), 713720.
Goldstein,, R.M., Engelhardt,, H. Kamb, B. and Frolich,, R.M. 1993. Satellite radar interferometry for monitoring ice sheet motion: appiction to an Antarctic ice stream. Science, 262 (5139), 15251530.
Hartl,, P., Thiel,, K.-H. Wu,, X. Doake,, C.S.M and Sievers, J. 1994. Application of SAR interferometry with ERS-1 in the Antarctic. Earth Observation Quarterly. 43, 14.
Joughin,, I.R. 1995. Estimation of ice-sheet topography and motion using interferometric syntheic aperture radar. (Ph.D. thesis, University of Washington.)
Joughin,, I.R., Winebrenner,, D.P and Fahnestock., M.A. 1995. Observations of ice-sheet motion in Greenland using satellite radar interferometry. Geophys.Res. Lett., 22 (5), 571574.
Joughin,, I., Winebrenner,, D. Fahnestoce,, M. Kwok, R. and Krabill, W. 1996. Measurment of ice-sheet topography using satellite-radar interferometry. J. Glaciol., 42 (140), 1022.
Kwok,, R. and Fahnestock,, M.A. 1996. Ice sheet motion adn topography from radar interferometry. IEEE Trans. Geosci. Remote SEnsing, GE-34 (1), 189200.
Li,, F.K. and Goldstein,, R.M. 1990. Studies of multi-baseline spaceborne interferrometric synthetic aperture radars. IEEE Trans. Geosci. Remote Sensing, GE-28 (1), 8897.
Massonnct., D. and 6 others. 1993. The displacement field o fLanders earthquake mapped by radar interferometry. Nature, 364 (6433), 138142.
Paterson,, W.S.B. 1994. The physics of glaciers. Third edition, Oxford, etc., Elsevier.
Press,, W.H., Flannery,, B.P, Teukolsky,, S.A ame Vetterling,, W.T. 1992. Numerical recipes in C: the art of scientific computing. Second edition. Cambridge, Cambridge University Press.
Rignot,, E., Jezek,, K.C and Sohn,, H.C. 1994. Mapping glacial motion using radar interferometry. [Abstract.] EOS, 75 (44), Supplement, 212.
Rignot,, E., Jezek,, K.C and Sohn,, H.G. 1995 Ice flow dynamics of the Greenland ice sheet from SAR interferometry. Geopys. Res. Lett., 22 (5), 575578.
Rodriguez,, E. and Martin,, J.M. 1992. Theory and design of interferometric synthetic aperture radars. IEEE Proc., Ser.F, 139 (2), 147159.
Scambos,, T.A., Dukiewicz,, M.J, Wilson,, J.C and Bindschadler,, R.A. 1992. Application of image cross-correlation on the measurement of glacier velocity using satellite image data. Remote Sensing Environ., 42 (3), 177186.
Smity,, A.M., Wilson, C. and Meadowns,, P.J. 1994. The EODC SAR processor. Int. J. Remote Sensing, 15 (4), 785801.
Solaas,, G. A. 1994. ERS-1 SAR interferometric baseline algorithm verification, version 1.1. Frascati, Italy, ESA/ESRIN. (ES-TN-DPE-OM-GS02.)
Weidick,, A. 1995. Greenland. U.S. Geol. Surv.Prof. Pap. 1386-C, C1–C93.
Zebker,, H.A. and 8 others. 1992. The TOPSAR interferometric radar topographic mapping instrument. IEEE Trans. Geosci. Remote Sensing, GE-30 (5), 933940.
Zebker,, H.A., Werner,, C.L, Rosen,, P.A and Hensley, S. 1994. Accuracy of topographie maps derived from ERS-1 interferometry. IEEE Trans. Geosci. Remote Sensing, GE-32 (4), 823836.

Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland

  • Ian Joughin (a1), Ron Kwok (a1) and Mark Fahnestock (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed