Skip to main content Accessibility help
×
Home

Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based scaling relationships

  • A. Martín-Español (a1), F.J. Navarro (a1), J. Otero (a1), J.J. Lapazaran (a1) and M. Błaszczyk (a2)...

Abstract

We present a set of new volume scaling relationships specific to Svalbard glaciers, derived from a sample of 60 volume–area pairs. Glacier volumes are computed from ground-penetrating radar (GPR)-retrieved ice thickness measurements, which have been compiled from different sources for this study. The most precise scaling models, in terms of lowest cross-validation errors, are obtained using a multivariate approach where, in addition to glacier area, glacier length and elevation range are also used as predictors. Using this multivariate scaling approach, together with the Randolph Glacier Inventory V3.2 for Svalbard and Jan Mayen, we obtain a regional volume estimate of 6700 ± 835 km3, or 17 ± 2 mm of sea-level equivalent (SLE). This result lies in the mid- to low range of recently published estimates, which show values as varied as 13 and 24 mm SLE. We assess the sensitivity of the scaling exponents to glacier characteristics such as size, aspect ratio and average slope, and find that the volume of steep-slope and cirque-type glaciers is not very sensitive to changes in glacier area.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based scaling relationships
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based scaling relationships
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based scaling relationships
      Available formats
      ×

Copyright

Corresponding author

Correspondence: A. Martín-Español <albamartinespanol@gmail.com>

References

Hide All
Adhikari, S and Marshall, SJ (2012) Glacier volume–area relation for high-order mechanics and transient glacier states. Geophys. Res. Lett., 39(16), L16505 (doi: 10.1029/2012GL052712)
Arctic Climate Impact Assessment (ACIA) (2005) Arctic Climate Impact Assessment: scientific report. Cambridge University Press, Cambridge
Arendt, A and 81 others (2014) Randolph Glacier Inventory (RGI), Vers. 4.0: a dataset of global glacier outlines. Global Land Ice Measurements from Space, Boulder, CO. Digital media: http://www.glims.org/RGI/
Bælum, K and Benn, DI (2011) Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar. Cryosphere, 5(1), 139149 (doi: 10.5194/tc-5-139-2011)
Bahr, DB (1997a) Width and length scaling of glaciers. J. Glaciol., 43(145), 557562
Bahr, DB (1997b) Global distributions of glacier properties: a stochastic scaling paradigm. Water Resour. Res., 33(7), 16691679 (doi: 10.1029/97WR00824)
Bahr, DB, Meier, MF and Peckham, SD (1997) The physical basis of glacier volume–area scaling. J. Geophys. Res., 102(B9), 20 35520 362 (doi: 10.1029/97JB01696)
Bahr, DB, Pfeffer, WT and Kaser, G (2014) Glacier volume estimation as an ill-posed inversion. J. Glaciol., 60(223), 922934 (doi: 10.3189/2014JoG14J062)
Bamber, JL (1989) Ice/bed interface and englacial properties of Svalbard ice masses deduced from airborne radio echo-sounding data. J. Glaciol., 35(119), 3037 (doi: 10.3189/002214389793701392)
Bevington, PR and Robinson, DK (2003) Data reduction and error analysis for the physical sciences, 3rd edn. McGraw-Hill, New York
Björnsson, H , and 6 others (1996) The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol., 42(140), 2332
Cade, BS and Richards, JD (1996) Permutation tests for least absolute deviation regression. Biometrics, 52(3), 886902
Chen, J and Ohmura, A (1990) Estimation of Alpine glacier water resources and their change since the 1870s. IAHS Publ. 193 (Symposium at Lausanne 1990 – Hydrology in Mountainous Regions), 127135
Cogley, JG (2012) The future of the world’s glaciers. In Henderson-Sellers, A and McGuffie, K eds. The future of the world’s climate. Elsevier, Waltham, MA, 197222
Dowdeswell, JA, Drewry, DJ, Liestøl, O and Orheim, O (1984) Radio echo-sounding of Spitsbergen glaciers: problems in the interpretation of layer and bottom returns.J. Glaciol., 30(104), 1621
Drewry, DJ, Liestøl, O, Neal, CS, Orheim, O and Wold, B (1980) Airborne radio echo sounding of glaciers in Svalbard. Polar Rec., 20(126), 261266
Dunse, T (2011) Glacier dynamics and subsurface classification of Austfonna, Svalbard: inferences from observations and modelling. (PhD thesis, University of Oslo)
Etzelmüller, B, Ödegård, RS, Vatne, G, Mysterud, RS, Tonning, T and Sollid, JL (2000) Glacier characteristics and sediment transfer system of Longyearbreen and Larsbreen, western Spitsbergen. Nor. Geogr. Tidsskr., 54(4), 157168
Farinotti, D, Huss, M, Bauder, A and Funk, M (2009) An estimate of the glacier ice volume in the Swiss Alps. Global Planet. Change, 68(3), 225231 (doi: 10.1016/j.gloplacha.2009.05.004)
Farinotti, D and Huss, M (2013) An upper-bound estimate for the accuracy of glacier volume–area scaling. Cryosphere, 7(6), 17071720 (doi: 10.5194/tc-7-1707-2013)
Frey, H , and 9 others (2013) Ice volume estimates for the Himalaya– Karakoram region: evaluating different methods. Cryos. Discuss., 7(5), 48134854 (doi: 10.5194/tcd-7-4813-2013)
Geisser, S (1993) Predictive inference: an introduction. (Monographs on Statistics & Applied Probability 53) Chapman & Hall, New York
Grabiec, M, Jania, J, Puczko, D, Kolondra, L and Budzik, T (2012) Surface and bed morphology of Hansbreen, a tidewater glacier in Spitsbergen. Pol. Polar Res., 33(2), 111138 (doi: 10.2478/v10183-012-0010-7)
Grinsted, A (2013) An estimate of global glacier volume. Cryosphere,7(1),141151 (doi:10.5194/tc-7-141-2013)
Hagen, JO and Sætrang, A (1991) Radio-echo soundings of sub-polar glaciers with low-frequency radar. Polar Res., 9(1), 99107 (doi: 10.1111/j.1751-8369.1991.tb00405.x)
Hagen, JO, Liestøl, O, Roland, E and Jørgensen, T (1993) Glacier atlas of Svalbard and Jan Mayen. Nor. Polarinst. Medd. 129
Hauck, C and Kneisel, C (2008) Applied geophysics in periglacial environments. Cambridge University Press, Cambridge
Huss, M and Farinotti, D (2012) Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res., 117(F4), F04010 (doi: 10.1029/2012JF002523)
Huss, M and Farinotti, D (2014) A high-resolution bedrock map for the Antarctic Peninsula. Cryosphere, 8(4),12611273 (doi: 10.5194/tc-8-1261-2014)
König, M, Nuth, C, Kohler, J, Moholdt, G and Pettersen, R (2014) A digital glacier database for Svalbard. In Kargel, JS, Leonard, GJ, Bishop, MP, Kääb, A and Raup, BH eds Global land ice measurements from space. Springer Praxis, Berlin
Lapazaran, J , and 6 others (2013) Ice volume changes (1936–1990– 2007) and ground-penetrating radar studies of Ariebreen, Hornsund, Spitsbergen. Polar Res., 32, 11068 (doi: 10.3402/polar.v32i0.11068)
Macheret, Y and Zhuravlev, AB (1980) Radiolokatsionnoye zondirovaniye lednikov Shpitsbergena s vertoleta [Radio echo-sounding of Spitsbergen’s glaciers from a helicopter]. Mater. Glyatsiol. Issled./Data Glaciol. Stud., 37, 109131 [in Russian with English summary]
YuYa, Macheret and Zhuravlev, AB (1982) Radio echo-sounding of Svalbard glaciers. J. Glaciol., 28(99), 295314
Macheret, Y, Zhuravlev, AB and Bobrova, LI (1984) Tolshchina, podlednyy rel’yef i ob”yem lednikov Shpitsbergena po dannym radiozondirovan-iya [Thickness, subglacial relief and volume of Svalbard glaciers from radio echo-sounding data]. Mater. Glyatsiol. Issled., 51, 4963 [in Russian with English summary]
Malecki, J (2013) The actual state of Svenbreen (Svalbard) and changes of its physical properties after the termination of Little Ice Age. (PhD thesis, Adam Mickiewicz University)
Martín-Español, A (2013) Estimate of the total ice volume of Svalbard glaciers and their potential contribution to sea-level rise. (PhD thesis, Polytechnic University of Madrid)
Martín-Español, , and 7 others (2013) Radio-echo sounding and ice volume estimates of western Nordenskiöld Land glaciers, Svalbard. Ann. Glaciol. , 54(64), 211217 (doi: 10.3189/2013AoG64A109)
Marzeion, B, Jarosch, AH and Hofer, M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere, 6(6), 12951322 (doi: 10.5194/tc-6-1295-2012)
McNabb, RW , and 11 others (2012) Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA. J. Glaciol., 58(212), 11511164 (doi: 10.3189/2012JoG11J249)
Meier, MF , and 7 others (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 10641067 (doi: 10.1126/science.1143906)
Melvold, K, Schuler, T and Lappegard, G (2003) Ground-water intrusions in a mine beneath Høganesbreen, Svalbard: assessing the possibility of evacuating water subglacially. Ann. Glaciol., 37, 269274 (doi: 10.3189/172756403781816040)
Navarro, FJ , and 6 others (2014) Ice volume estimates from ground-penetrating radar surveys, Wedel Jarlsberg land glaciers, Svalbard. Arct. Antarct. Alp. Res., 46(2), 394406
Nuth, C, Kohler, J, Aas, HF, Brandt, O and Hagen, JO (2007) Glacier geometry and elevation changes on Svalbard (1936–90): a baseline dataset. Ann. Glaciol., 46, 106116 (doi: 10.3189/172756407782871440)
Nuth, C, Moholdt, G, Kohler, J, Hagen, JO and Kääb, A (2010) Svalbard glacier elevation changes and contribution to sea level rise. J. Geophys. Res., 115(F1), F01008 (doi: 10.1029/2008JF001223)
Nuttall, A-M, Hagen, JO and Dowdeswell, J (1997) Quiescent-phase changes in velocity and geometry of Finsterwalderbreen, a surge-type glacier in Svalbard. Ann. Glaciol., 24, 249254
Pälli, A, Moore, JC, Jania, J and Głowacki, P (2003) Glacier changes in southern Spitsbergen, Svalbard, 1901–2000. Ann. Glaciol., 37, 219225 (doi: 10.3189/172756403781815573)
Pettersson, R, Christoffersen, P, Dowdeswell, JA, Pohjola, VA, Hubbard, A and Strozzi, T (2011) Ice thickness and basal conditions of Vestfonna Ice Cap, eastern Svalbard. Geogr. Ann. A, 93(4), 311322 (doi: 10.1111/j.1468-0459.2011.00438.x)
Pfeffer, WT , and 19 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol., 60(221), 537552 (doi: 10.3189/2014JoG13J176)
Radić, V and Hock, R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res., 115(F1), F01010 (doi: 10.1029/2009JF001373)
Radić, V, Hock, R and Oerlemans, J (2008) Analysis of scaling methods in deriving future volume evolutions of valley glaciers. J. Glaciol., 54(187), 601612 (doi: 10.3189/002214308786570809)
Radić, V, Bliss, A, Beedlow, AC, Hock, R, Miles, E and Cogley, JG (2014) Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dyn., 42(1–2), 3758 (doi: 10.1007/s00382-013-1719-7)
Saintenoy, A , and 7 others (2013) Deriving ice thickness, glacier volume and bedrock morphology of Austre Lovénbreen (Svalbard) using GPR. Near Surf. Geophys., 11(2), 253261 (doi: 10.3997/1873-0604.2012040)
Schuler, TV, Müller, K and Abrahamsen, T (2007) Georadar measurements on Marthabreen and Sysselmannbreen. University of Oslo http://folk.uio.no/joh/Paco/martha_report07.pdf
Songtao, A , and 6 others (2014) Topography, ice thickness and ice volume of the glacier Pedersenbreen in Svalbard, using GPR and GPS. Polar Res., 33, 18533 (doi: 10.3402/polar.v33.18533)
Stocker, TF , and 9 others eds (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York
Willis, IC, Rippin, DM and Kohler, J (2007) Thermal regime changes of the polythermal Midre Lovénbreen, Svalbard. In The Dynamics and Mass Budget of Arctic Glaciers (Extended Abstracts), Workshop and GLACIODYN (IPY) Meeting, 15–18 January 2007, Pontresina, Italy. Institute for Marine and Atmospheric Research, Utrecht University (IMAU), Utrecht, 131133

Keywords

Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based scaling relationships

  • A. Martín-Español (a1), F.J. Navarro (a1), J. Otero (a1), J.J. Lapazaran (a1) and M. Błaszczyk (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed