Skip to main content Accessibility help
×
Home

Engineering Properties of Snow

  • Malcolm Mellor (a1)

Abstract

The general properties of snow are described with a view to engineering applications of data. Following an introduction and a short note on the origins of snow, data are given for fall velocities of snow particles, and for mass flux and particle concentrations in falling snow and blowing snow. Notes on the structural properties of deposited snow cover grain size, grain bonds, bulk density, overburden pressure, and permeability. A section on impurities deals with stable and radioactive isotopes, chemical impurities, insoluble particles, living organisms, acidity, and gases. Mechanical properties are treated only selectively, and the reader is referred to another paper for comprehensive coverage. The selective treatment deals with stress waves and strain waves, compressibility, effects of volumetric strain on deviatoric strain, and specific energy for comminution. The section on thermal properties covers heat capacity, latent heat, conductivity, diffusivity, heat transfer by vapor diffusion, heat transfer and vapor transport with forced convection, and thermal strain. The section on electrical properties opens with a brief discussion on dielectric properties of ice, and proceeds to a summary of the dielectric properties of snow, including dielectric dispersion, permittivity, dielectric loss, and d.c. conductivity. There are also notes on the thermoelectric effect and on electrical charges in falling and blowing snow. The section on optical properties deals with transmission and attenuation of visible radiation, with spectral reflectance, and with long-wave emissivity. The review concludes with some comments on engineering problems that involve snow, and the requirements for research and development.

Résumé

Propriétés de la neige pour l’ingénieur. On décrit les propriétés générales de la neige en insistant sur les applications aux besoins de l’ingénieur. Après une introduction et une courte note sur l’origine de la neige, on donne des résultats concernant la vitesse de chute des particules de neige, pour le flux en masse et la concentration en particules de la neige tombante et de la neige soufflée par le vent. On donne des notes concernant les propriétés structurelles du manteau neigeux déposé, dimensions des grains, liaisons entre grains, masse volumique, pression sur les objets enfouis et perméabilités. Une section traite des impure tés avec les isotopes stables et radioactifs, les impuretés chimiques, les particules insolubles, les organismes vivants, l’acidité, les gaz inclus. Les propriétés mécaniques ne sont traitées que partiellement et le lecteur est renvoyé à un autre article pour une information plus complète. Les propriétés mécaniques traitées concernent la transmission des ondes de contraintes et de déformation, la compressibilité, les effets des déformations en volume sur le déviateur des déformations, et l’énergie spécifique de fragmentation. La section des propriétés thermiques embrasse la capacité calorifique, la chaleur latente, la conductivité, la diffusivité, les transferts thermiques par diffusion de vapeur, les transferts de chaleur et le transfert par la vapeur avec convection forcée et la vitesse de déformation thermique. La section des proprétés électriques s’ouvre sur uric brève discussion des propriétés diélectriques de la glace et passe en revue les propriétés diélectriques de la neige comprenant la dispersion dielectrique, la permittivité, les pertes diélectriques et la conductivité d.c. Il y a également des notes sur l’effet thermoélectriquc et sur les charges electriques dans la neige tombante ou soufflée. La section des propriétés optiques park de is transmission at de l’atténuation de la radiation visible, de la réflectance spectrale et de l’émissivité en grande longucur d’onde. La revue conclue avec quelques commentaires sur les problèmes que pose la neige à l’ingénieur et les besoins en développement de la recherche.

Zusammenfassung

Ingenieurtechnische Eigenschaften des Schnees. Die allgemeinen Eigenschaften des Schnees werden unter dem Gesiehtspunkt ingenieurtechnischer Verwendung der Daten beschrieben. Nach einer Einführung und kurzen Hinweisen auf die Entstehung des Schnees werden Daten über die Fallgeschwindigkeit von Schneepartikeln sowie über den Massenfluss und die Teilchenkonzentration in fallendem and Treib-Schnee angegeben. Bemerkungen über die strukturelleri Eigenschaften abgelagerten Schnees beziehen sich auf die Korngrösse, die Kornbindungen, die Massendichte, den Auflastdruck und die Durchlässigkeit. Ein Abschnitt über Verunreinigungen behandelt stabile und radioaktive Isotope, chemische Verunreinigungen, unlösliche Partikel, lebende Organismen, Säuren und Gase. Mechanische Eigenschaften warden nur in Auswahl behandelt, unter Hinweis auf eine andere Publikation mit vollständiger Darstellung. Die Auswahl erstreckt sich auf Zug- und Druckwellen, Komprimierbarkeit, Auswirkung volumetrischer Beanspruchung auf deviatorische Spannung und spezifische Setzungsenergie. Der Abschnitt über thermische Eigenschaften enthält Angaben über die Wärmekapazität, die latente Wärme, die Leitfähigkeit, die Wärmediffusion, den Wärmetransport durch Dampfdiffusion, Wärme- und Dampftransport durch erzwungene Konvektion und thermische Spannung. Der Abschnitt über elektrische Eigenschaften beginnt mit einer kurzen Diskussion der dielektrischen Eigenschaften des Eises und filhrt zu einer zusammenfassenden Darstellung der dielektrischen Eigenschaften des Schnees einschliesslich der dielektrischen Dispersion, der Dielektrizitatskonstante, des dielektrischen Verlustes und der Gleichstrom-Leitfähigkeit. Ferner finden sich Bemerkungen über den thermoelektrischen Effekt bzw. die elektrische Ladung in fallendem und Treib-Schnee. Der Abschnitt über die optischen Eigenschaften gilt der Fortpflanzung und Dämpfung der sichtbaren Strahlung, der spektralen Reflexion und der langwelligen Ausstrahlung. Die Übersicht schliesst mit einigen Anmerkungen zu ingenieurtechnischen Problemen im Zusammenhang mit Schnee und über die Erfordernisse der Forschung und Entwieklung.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Engineering Properties of Snow
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Engineering Properties of Snow
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Engineering Properties of Snow
      Available formats
      ×

Copyright

References

Hide All
Abele,, G. and Gow,, A. J. 1975. Compressibility characteristics of undisturbed snow, U.S. Cold Regions Research and Engineering Laboratory. Research Report 336.
Abele,, G. and Gow,, A. J. 1976. Compressibility characteristics of compacted snow. U.S. Cold Regions Research and Engineering Laboratory. CRREL Report 76-21.
Ambach,, W. 1958. Zur Bcstimmung des Schmelzwassergehaltes des Schnees durch dielektrische Messung. Zeitsckriftfiir Gletscherkunde und Glazialgeologie, Bd. 4, Ht. 1-2 p. 18 .
Ambach,, YV. and Dcnoth,, A. 1972. Studies on the dielectric properties of snow. Zeitschrift fur Gletscherkunde und Glazialgeologie, Bd. 8, Ht. 1-2, p. 11323 .
Ambach,, W. and Habicht,, H. L. 1962. Untersuchungen der Extinktionseigenschaften des Gletschereises und Schnees. Archiv fur Meteorologies Geophysik und Bioklimatologie, Ser. B. Bd. 11, Ht. 4 p. 51232 .
Andrieux,, P. Unpublished. Resultats preliminaires d’une campagne de mesures 6lectriques sur des glaciers et calottes de glace du Ganada. [Section de Glaciologie de la Soci£td Hydrotechniquc de France, reunion du 24 et 25 fevrier 1966.]
Bader,, H. and Kuroiwa,, D. 1962. The physics and mechanics of snow as a material, U.S. Cold Regions Research and Engineering Laboratory. Cold regions science and engineering. Hanover, N.H. Pt. II, Sect. B.
Barkstrom,, B. R. 1972. Some effects of multiple scattering on the distribution of solar radiation in snow and ice. Journal of Glaciology, Vol. 11, No. 63, p. 35768 .
Barkstrom,, B. R. and Querfeld,, C. W, 1975 Concerning the effect of anisotropic scattering and finite depth on the distribution of solar radiation in snow. Journal of Glaciology, Vol. 14, No. 70, p. 10724 .
Bohren,, C. F. and Barkstrom,, B. R. 1974. Theory of the optical properties of snow. Journal of Geophysical Research, Vol. 79, No. 30, p. 452735 ,
Bryazgin,, N. N. and Koptev,, A. P. 1969- O spektraFnom al’bedo snezhno-ledyanogo pokrova [Spectral albedo of snow-ice covcrj. Problemy Arktiki i Antarktiki, Vyp. 31, p. 7983 .
Butkovich,, T. R. 1956. Strength studies oi high-density snow. U.S. Snow. Ice and Permafrost Research Establishment. Research Report 18.
Chaillou,, A. and Vallon,, M. 1964. £tudc de la zone corticate des glaciers temperes par prospcction £lectrique? avec un potentiometre d impedance d’entree infinie. Annales de Geophysique, Tom. 20, No. 2, p. 20105 .
Colbeck,, S. C. In press. The physical aspects of water flow through snow. Advances in Hydroscience.
Croce,, K. 1958. Bau und Erprobung eines Messgerates fur die Zerspanungsarbeit von Schnee. Bauhof fur Winterdienst (Inzell), Arbeitsbericht A4.
cumming,, W A. 1952. Dielectric properties of ice and snow at 3.2 centimeters. Journal of Applied Physics, Vol. 23, No. 7, p. 76873 .
Dickinson,, H. C. and Osborne,, N. S, 1915. Specific heat and heat of fusion of ice. Bulletin of the Bureau of Standards (Washington, D.C.), Vol. 12, No. 1. p. 4981 .
Dingle,, R. and Radok,, U. 1961. Antarctic snow drift and mass transport. Union Geodesique et Geophysique Inter- nationale. Association Internationale d’Hydro logic Scientifique. Assembles generale de Helsinki, 25-7—6-8 i960. Colloque sur la glaciologie antarctique, p. 7787 . (Publication No. 55 de PAssociation Internationale d’HydroIogie Scientifique.)
Dorsey,, N. E. 1940. Properties of ordinary water-substance in all its phases: water-vapor, water and all the ices. New York, Reinhofd Publishing Corporation. (American Chemical Society. Monograph Series, No. 81.)
Dunkle,, R. V. and Bevans,, J. T. 1956. An approximate analysis of the solar reflectance and transmittance of a snow cover. Journal of Meteorology, Vol. 13, No. 2, 21216 .
Dunkle,, R. V. and Gier,, J. T. 1955. Spectral characteristics of wet and dry snow between o and 6o°C. U.S. Snow, Ice and Permqfrost Research Establishment. Technical Report 16.
Dunkle,, R. V. and others. 1957. Emissivity of ice, snow and frozen ground, by R. V. Dunkle, J. T. Gier and J. I. Bevans. Refrigerating Engineering (New York), Vol. 65, No. 4, p. 3335 .
Eisenberg,, D. and Kauzmann,, W. 1969. Structure and properties of water. Oxford, Clarendon Press.
Fletcher,, N. H. 1970. The chemical physics of ice. Cambridge, University Press. (Cambridge Monographs on Physics.)
Flubacher., P.. and others, 1960. Heat capacity of ice at low temperatures, by P. Flu bat her, A. J. Lead better and J. A, Morrison. Journal of Chemical Physics, Vol. 33, No. 6, p. 1751-55.
Foggi, G. E. 1967. Observations on the snow algae of the South Orkney Islands. Ph Hosophical Transactions of the Royal Society of London, Ser. B, Vol. 252, No. 777, p. 27987 .
Forcrand,, R. de and Gay,, L. 1929. Latent heats of fusion. In Washburn,, E. W., ed. International critical tables. Vol. 5. New York. McGraw-Hill, p. 13035.
Giauque,, W. F. and Stout,, J. W. 1936. The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273 K. Journal of the American Chemical Society, Vol. 58, No. 7, p. 114450 .
Giddings,, J. C. and LaChapelle,, E. R. 1961. Diffusion theory applied to radiant energy distribution and albedo of snow. Journal of Geophysical Research, Vol. 66, No. 1, p. 18189 .
Glen,, J. W. 1974. The physics of ice. U.S. Cold Regions Research and Engineering Laboratory. Cold regions science and engineering. Hanover, N.H., Pt. II, Sect. C2a.
Glen,, J. W., and Paren,, J. G. 1975. The electrical properties of snow and ice. Journal of Glaciology, Vol. 15. No. 73 P. 15-37
Hobbs,, P. V. 1974. Ice physics. Oxford, Clarendon Press.
Hochstein,, M. 1965. Elektrische Widerstandsmessungen auf dem gronlandischen Inlandeis. Meddelelser om Granland, Bd. 177, Nr. 3.
Hochstein,, M. and Risk,, G. F. 1967[a]. Determination of the activation energy of polar firn by D.C. resistivity measurements. Journal of Glaciology. Vol. 6, No. 48, p. 91116 .
Hochstein,, M. and Risk,, G. F. 1967[b]. Geophysical measurements on the McMurdo Ice Shelf, Antarctica, during 1965-1966. New Zealand. Dept, of Scientific and Industrial Research. Geophysics Division. Report No. 47.
Holmgren,, B. Unpublished. [Changes of albedo on the Devon Island ice cap.] [Paper presented at 4. Internationale Polartagung der Deutschen Gesellsehaft fur Polarforschung e.V., 1963.]
Jaafar,, H. and Picot,, J. J. C. 1970. Thermal conductivity of snow by a transient state probe method. Water Resources Research, Vol. 6, No. 1, p. 33335 .
Johari,, G. P. and Gharette,, P. A. 1975. The permittivity and attenuation in polycrystalline and single-crystal ice Ih at 35 arid 60 MHz. Journal of Glaciology, Vol. 14, No. 71, p. 293303 .
Keeler,, G. M. 1969. Some physical properties of alpine snow. U.S. Cold Regions Research and Engineering Laboratory. Research Report 271.
Klinger,, J. 1975. Low-temperature heat conduction in pure, monocrystalline ice. Journal of Glaciology. Vol. 14, No. 72, p. 51728 .
Kopp,, M. 1962. Conductivity électrique de la neigc, au eourant continu. Zeitschrifl fur Angewandte Mathematik und Physik, Vol. 13, Fasc. 5, p. 43141 .
Liljequist,, G. H. 1956. Energy exchange of an Antarctic snow-field. Short-wave radiation (Maudheim, 71 03’ S., !o°56’W.). Norwegian BritishSwedish Antarctic Expedition, 1949-52. Scientific Results, Vol. 23,
List,, R. J. ed. 1951. Smithsonian meteorological tables. Sixth revised edition. Smithsonian Miscellaneous Collections, Vol. 114. (Publication 4.014.)
Mellor,, M. 1964. Properties of snow. U.S. Cold Regions Research and Engineering Laboratory. Cold regions science and engineering. Hanover, N.H., Pt. Ill, Sect. At.
Mellor,, M. 1966[a]. Light scattering and particle aggregation in snowstorms. Journal of Glaciology, Vol. 6, No. 44, 23546 .
Mellor,, M. 1966[b]. Some optical properties of snow. Union de Geodesic et Giophysique Internationale. Association Internationale d’Hydrologie Scientifique. Commission pour la Neige et la Glace. Division Neige Saisonniere et Avalanches. Symposium international sur les aspects scientifiques des avalanches de neige, 5-10 avril 1965, Davos, Suisse, p. 1:28-40 . (Publication No. 6g de 1’Association Internationale d’Hydrologie Scientifique.)
Mellor,, M. 1968. Avalanches. U.S. Cold Regions Research and Engineering Laboratory. Cold regions science and engineering. Hanover, N.H., Pt. Ill, Sect. A1.
Mellor,, M. 1972. Normalization of specific energy values. International Journal of Rock Mechanics and Mining Sciences, Vol. 9, No. 5, p. 66163 .
Mellor,, M. 1973. Controlled release of avalanches by explosives. U.S. Dept, of Agriculture. Forest Service. General Technical Report RM-3, p. 3749 .
Mellor,, M. [1975.] A review of basic snow mechanics. [Union Geodesique et Geophysique Internationale. Association Internationale des Sciences Hydralogiqties. Commission des Neigts et GIaces.\ Symposium. Mecanique de la neige. Actes du colloque de Grindelwald, avril 1974, p. 25191 . (IAHS AISH Publication No. 114.)
Mellor,, M. 1977[a], Dynamics of snow avalanches. In Voight,, B., ed. Rockslides and avalanches. Amsterdam, Elsevier Scientific Publishing Co., Vol. 1, p. 75392.
Mellor,, M. 1977[b], Mechanics of cutting and boring. Pt. IV: dynamics and energetics of parallel motion tools. U.S. Cold Regions Research and Engineering Laboratory. CRREL Report 77-7.
Mellor,, M. and Hawkes,, I. 1972[a]. Hard rock tunneling machine characteristics. In Lane,, K. S., and Garfield,, L. A., ed. Proceedings of North American rapid excavation and tunneling conference, Chicago, Illinois, June 1-7, 1972. New York, American Institute of Mining, Metallurgical and Petroleum Engineers, Vol. 2, p. s 149-58.)
Mellor,, M. and Hawkes,, I. 1972[b], How to rate a hard-rock borer. World Construction, Vol. 60, No. 9, p. 2123 .
Mellor,, M. and Seltmann,, P. V. 1976. General considerations for drill system design. In Splettstoesser,, J. F., ed. Ice-core drilling. Proceedings of a symposium, University of Nebraska, Lincoln, 28-30 August 1971- Lincoln, London, University of Nebraska Press, p. 77111.
Meyer,, A. U. and Röthlisberger,, H. 1962. Electrical d-c resistivity measurements on glacier ice near Thule, Greenland. U.S. Cold Regions Research and Engineering Laboratory. Technical Report 87.
Napadensky,, H. 1964. Dynamic response of snow to high rates of loading. U.S. Cold Regions Research and Engineering Laboratory. Research Report 119.
O’Brien,, H. W. 1969. Attenuation of visible light by falling snow. U.S. Cold Regions Research and Engineering Laboratory, Research Report 242.
O’Brien,, H. W. 1970. Visibility and light attenuation in falling snow. Journal of Applied Meteorology, Vol. 9, No. 4, p. 67183 .
O’Brien,, H. W. and Munis,, R. H. 1975. Red and near-infrared spectral reflectance of snow. U.S. Cold Regions Research and Engineering Laboratory. Research Report 332.
O’Brien,, H. W. and Munis,, R. H. Unpublished. Optical properties of melting snow. [U.S. Cold Regions Research and Engineering Laboratory report to National Environmental Satellite Service, 1973.]
Paren,, J. G. Unpublished. Diclectric properties of ice. [Ph.D. thesis, University of Cambridge, 1970.]
Pitman,, D. and Zuckerman,, B. 1967. Effective thermal conductivity of snow at 88’J, —27" and —5°C. Journal of Applied Physics, Vol. 38, No. 6, p. 269899 . ...
Röthlisberger,, H. 1972. Seismic exploration in cold regions. U.S. Cold Regions Research and Engineering Laboratory. Cold regions science and engineering. Hanover, N.H., Pt. II, Sect. Aaa.
Rusin,, N. P. 1961. Meteorologiclieskiy i radiatsionyy rezhim Antarktidy. Leningrad, Gidrometeorologicheskoye Izdatel’stvo. [English translation: Meteorological and radiational regime of Antarctica. Jerusalem. Israel Program for Scientific Translations, 1964. (Published for U.S. Dept, of Commerce.)] ... .
Schwerdtfeger,, P. 1963. Theoretical derivation of the thermal conductivity and diffusivity of snow. Union Geodesique et Geophysique Internationale. Association Internationale d’Hydrologit Scientifique. Assemblee generate de Berkeley, 19-8—31-8 1963. Commission des Neiges et des Glaces, p. 7581 . (Publication No. 61 de l’Association Internationale d’Hydrologie Scientifique.)
Shimizu,, H. 1970. Air permeability of deposited snow. Contributions from the Institute of Low Temperature Science, Hokkaido University, Ser. A, No. 22.
Shimoda,, H. 1941. Sekisetsu no denki teiko [Electrical resistance of snow]. Seppyo, Vol. 3, No. 12, p. 50306 . [English translation: U.S. Snow, Ice and Permafrost Research Establishment. Translation 31, 1954.]
Smith,, R. I. L. 1972. Vegetation of the South Orkney Islands with particular reference to Signy Island. British Antarctic Survey Scientific Reports, No. 68.
Sweeny,, B. D. and Colbeck,, S. C. 1974. Measurements of the dielectric properties of wet snow using a microwave technique. U.S. Cold Regions Research and Engineering Laboratory. Research Report 325. _
Thomas,, C. W. 1963. On the transfer of visible radiation through sea ice and snow. Journal of Glaciology, Vol. 4, No. 34, p. 48184 .
Timerev,, A. A. 1970. Yestestvennaya osveshchennost’ i proniknoveniye sveta v sncg v tsentral’noy Arktike [Natural illuminance and penetration of light into snow in the central Arctic]. Problemy Arktiki i Antarktiki, Vyp 34 p. 3541 .
Tsuda,, Y. 1951. Sekisetsu no denki teiko [Electrical resistance of snow]. Sekisetsu Kenkyu: Studies in Fallen Snow, No. 3.
Vickers,, A. F. Unpublished, The reflectance characteristics of snow in the 0.3* 10 1.3-micron spectral region. [[London,] Ministry of Defence, Stares and Clothing Research and Development Establishment. Technical Memorandum SGRDE/73/6, 1973.]
Vogtli,, K. Unpublished. Die Bestimmung des spezifischen Widerstandes von schlecht leitenden geologischen Korpern. [Forschungs- und Vcrsuchsanstah PTT, Sektion Materialpriifung, Bericht No. 14, 1957, p. 103,]
Walt,, A. D., and Maxwell,, E. L. 1960. Measured electrical properties of snow and glacial ice. Journal of Research of the National Bureau of Standards, Vol. 64D, No. 4, p. 35763 .
Wilkinson,, D. S. and Ashby,, M. F. 1975. Pressure sintering by power-law creep. Acta Metallurgies, Vol. 23, No. 11, p. 127785 .
Woodside,, W. 1958. Calculation of the thermal conductivity of porous media. Canadian Journal of Physics, Vol. 36, No. 7, p. 81523 .
Wyllie,, M. R. J. and Southwick,, P. F. 1954. An experimental investigation of the S P. and resistivity phenomena in dirty sands. Journal of Petroleum Technology, Vol. 6, No. 2, p. 4457 .
Yen,, Y. C. 1962. Effective thermal conductivity of ventilated snow. Journal of Geophysical Research, Vol. 67, No. 3, p. 109198 .
Yen,, Y. C. 1963. Heat transfer by vapor transfer in ventilated snow. Journal of Geophysical Research, Vol. 68, No. 4, p. 109398 .
Yen,, Y. C. 1965[a]. Effective thermal conductivity and water vapor diffusivity of naturally compacted snow. Journal of Geophysical Research, Vol. 70, No. 8, p. 182125 .
Yen., Y. C. 1965[b]. Heat transfer characteristics of ventilated snow. U.S. Cold Regions Research and Engineering Laboratory. Research Report 106.
Yen., Y. C. 1969. Recent studies on snow properties. Advances in Ilydroscience, Vol. 5, p. 173214 .
Yoshino,, T. 1961. Radio wave propagation on the ice cap. Xankyoku Shiryo: Antarctic Record, No. 11, p. 22833 .
Yosida., Z. [i.e. Yoshida, J.J, and others. 1955. Physical studies of deposited snow I. Thermal properties, by Z. Yosida [i.e. J. Yoshida] and colleagues. Contributions from the Institute of Low Temperature Science, Hokkaido University, Ser, A, No. 7.
Zander,, R. 1966. Spectral scattering properties of ice clouds and hoarfrost. Journal of Geophysical Research, Vol. 71, No. 2, p. 37578 . _
Zander,, R. 1968. Additional details on the near-infrared reflectivity of laboratory ice clouds. Journal of Geo-physical Research. Vol. 73, No. 20, p. 658184 .

Engineering Properties of Snow

  • Malcolm Mellor (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.