Skip to main content Accessibility help
×
×
Home

Energy-based binary segmentation of snow microtomographic images

  • Pascal Hagenmuller (a1), Guillaume Chambon (a1), Bernard Lesaffre (a2), Frédéric Flin (a2) and Mohamed Naaim (a1)...

Abstract

X-ray microtomography has become an essential tool for investigating the mechanical and physical properties of snow, which are tied to its microstructure. To allow a quantitative characterization of the microstructure, the grayscale X-ray attenuation coefficient image has to be segmented into a binary ice/pore image. This step, called binary segmentation, is crucial and affects all subsequent analysis and modeling. Common segmentation methods are based on thresholding. In practice, these methods present some drawbacks and often require time-consuming manual post-processing. Here we present a binary segmentation algorithm based on the minimization of a segmentation energy. This energy is composed of a data fidelity term and a regularization term penalizing large interface area, which is of particular interest for snow where sintering naturally tends to reduce the surface energy. The accuracy of the method is demonstrated on a synthetic image. The method is then successfully applied on microtomographic images of snow and compared to the threshold-based segmentation. The main advantage of the presented approach is that it benefits from local spatial information. Moreover, the effective resolution of the segmented image is clearly defined and can be chosen a priori.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Energy-based binary segmentation of snow microtomographic images
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Energy-based binary segmentation of snow microtomographic images
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Energy-based binary segmentation of snow microtomographic images
      Available formats
      ×

Copyright

References

Hide All
Arnaud, L and 7 others (2011) Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation. J. Glaciol., 57(201), 1729 (doi: 10.3189/002214311795306664)
Boykov, Y and Funka-Lea, G (2006) Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vision, 70(2),109131 (doi: 10.1007/s11263-006-7934-5)
Boykov, Y and Kolmogorov, V (2003) Computing geodesics and minimal surfaces via graph cuts. In Proceedings of the 9th IEEE International Conference on Computer Vision, 13–16 October 2003, Nice, France. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2633
Boykov, Y and Kolmogorov, V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Machine Intell., 26(9),11241137 (doi: 10.1109/TPAMI.2004.60)
Boykov, Y, Veksler, O and Zabih, R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Machine Intell., 23(11), 12221239 (doi: 10.1109/34.969114)
Brzoska, J-B and 7 others (1999) 3D visualization of snow samples by microtomography at low temperature. ESRF Newsl. 32, 22–23
Brzoska, J-B, Flin, F and Barckicke, J (2008) Explicit iterative computation of diffusive vapour field in the 3-D snow matrix: preliminary results for low flux metamorphism. Ann. Glaciol., 48, 1318 (doi: 10.3189/172756408784700798)
Calonne, N, Flin, F, Morin, S, Lesaffre, B, Rolland du Roscoat, S and Geindreau, C (2011) Numerical and experimental investigations of the effective thermal conductivity of snow. Geophys. Res. Lett., 38(23), L23501 (doi: 10.1029/2011GL049234)
Chen, S and Baker, I (2010) Evolution of individual snowflakes during metamorphism. J. Geophys. Res., 115(D21), D21114 (doi: 10.1029/2010JD014132 )
Coléou, C, Lesaffre, B, Brzoska, JB, Ludwig, W and Boller, E (2001) Three-dimensional snow images by X-ray microtomography. Ann. Glaciol., 32, 7581 (doi: 10.3189/172756401781819418)
Dañek, O and Matula, P (2011a) An improved riemannian metric approximation for graph cuts. In Debled-Rennesson, I, Domenjoud, E, Kerautret, B and Even, P eds. Discrete Geometry for Computer Imagery. Proceedings of the 16th International Association of Pattern Recognition (IAPR) International Conference, 6–8 April 2011, Nancy, France. (Lecture Notes in Computer Science 6607) Springer, Berlin, 7182
Dañek, O and Matula, P (2011b) On Euclidean metric approximation via graph cuts. In Richard, P and Braz, J eds. Computer Vision, Imaging and Computer Graphics: Theory and Applications. International Joint Conference (VISIGRAPP 2010), 17–21 May 2010, Angers, France. (Communications in Computer and Information Science 229) Springer, Heidelberg
Delong, A and Boykov, Y (2008) A scalable graph-cut algorithm for N-D grids. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 23–28 June 2008, Anchorage, AK, USA. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 18
El-Zehiry, NY and Grady, L (2010) Fast global optimization of curvature. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 13–18 June 2010, San Francisco, CA, USA. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 32573264
Fierz, C and 8 others. (2009) The international classification for seasonal snow on the ground. (IHP Technical Documents in Hydrology 83) UNESCO–International Hydrological Programme, Paris
Flin, F (2004) Snow metamorphism description from 3D images obtained by X-ray microtomography. (PhD thesis, University of Grenoble)
Flin, F and Brzoska, J-B (2008) The temperature-gradient metamorphism of snow: vapour diffusion model and application to tomographic images. Ann. Glaciol., 49, 1721 (doi: 10.3189/172756408787814834)
Flin, F, Brzoska, JB, Lesaffre, B, Coléou, C and Pieritz, RA (2003) Full three-dimensional modelling of curvature-dependent snow metamorphism: first results and comparison with experimental tomographic data. J. Phys. D, 36(10A), A49A54 (doi: 10.1088/0022-3727/36/10A/310)
Flin, F and 7 others (2011) On the computations of specific surface area and specific grain contact area from snow 3D images. In Furukawa, Y, Sazaki, G, Uchida, T and Watanabe, N eds. Proceedings of the 11th International Conference on the Physics and Chemistry of Ice, 5–10 September 2010, Sapporo, Japan. Hokkaido University Press, Sapporo, 321328
Ford, LR and Fulkerson, DR (1956) Maximal flow through a network. Can. J. Math., 8, 399404
Freedman, D and Zhang, T (2005) Interactive graph cut based segmentation with shape priors. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 20–25 June 2005, San Diego, CA, USA. IEEE Computer Society, Los Alamitos, CA, 755762
Freitag, J, Wilhelms, F and Kipfstuhl, S (2004) Microstructure-dependent densification of polar firn derived from X-ray microtomography. J. Glaciol., 50(169), 243250 (doi: 10.3189/172756504781830123)
Gallet, J-C, Domine, F, Zender, CS and Picard, G (2009) Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. Cryosphere, 3(2), 167182 (doi: 10.5194/tc-3-167-2009)
Good, W (1987) Thin sections, serial cuts and 3-D analysis of snow. IAHS Publ. 162 (Symposium at Davos 1986 – Avalanche Formation, Movement and Effects), 3548
Heggli, M, Frei, E and Schneebeli, M (2009) Snow replica method for three-dimensional X-ray microtomographic imaging. J. Glaciol., 55(192), 631639 (doi: 10.3189/002214309789470932)
Iassonov, P, Gebrenegus, T and Tuller, M (2009) Segmentation of X-ray computed tomography images of porous materials: a crucial step for characterization and quantitative analysis of pore structures. Water Resour. Res., 45(9), W09415 (doi: 10.1029/2009WR008087)
Kaempfer, TU, Schneebeli, M and Sokratov, SA (2005) A micro-structural approach to model heat transfer in snow. Geophys. Res. Lett., 32(21), L21503 (doi: 10.1029/2005GL023873)
Kaestner, A, Lehmann, E and Stampanoni, M (2008) Imaging and image processing in porous media research. Adv. Water Resour., 31(9), 11741187 (doi: 10.1016/j.advwatres.2008.01.022)
Kerbrat, M, Pinzer, B, Huthwelker, T, Gäggeler, HW, Ammann, M and Schneebeli, M (2008) Measuring the specific surface area of snow with X-ray tomography and gas adsorption: comparison and implications for surface smoothness. Atmos. Chem. Phys., 8(5), 12611275 (doi: 10.5194/acp-8-1261-2008)
Lehmann, G and Legland, D (2012) Efficient N-dimensional surface estimation using Crofton formula and run-length encoding. Insight J., 2012, 111 http://hdl.handle.net/10380/3342852
Liu, Y-S, Yi, J, Zhang, H, Zheng, G-Q and Paul, J-C (2010) Surface area estimation of digitized 3D objects using quasi-Monte Carlo methods. Pattern Recog., 43(11), 39003909 (doi: 10.1016/j.patcog.2010.06.002 )
Mandelbrot, BB (1982) The fractal geometry of nature, 2nd edn. W.H. Freeman, New York
Matzl, M and Schneebeli, M (2006) Measuring specific surface area of snow by near-infrared photography. J. Glaciol., 52(179), 558564 (doi: 10.3189/172756506781828412)
Mellor, M (1975) A review of basic snow mechanics. IAHS Publ. 114 (Symposium at Grindelwald 1974 – Snow Mechanics), 251291
Perla, RI, Dozier, J and Davis, RE (1986) Preparation of serial sections in dry snow specimens. J. Microsc., 142(1), 111114 (doi: 10.1111/j.1365-2818.1986.tb02744.x)
Pieritz, RA, Brzoska, JB, Flin, F, Lesaffre, B and Coléou, C (2004) From snow X-ray microtomograph raw volume data to micromechanics modeling: first results. Ann. Glaciol., 38, 5258 (doi: 10.3189/172756404781815176)
Schneebeli, M (2001) Three-dimensional snow: what snow really looks like. In ISSW 2000. Proceedings of the International Snow Science Workshop, 1–6 October 2000, Big Sky, Montana, USA. American Avalanche Association, Bozeman, MT, 407408
Schneebeli, M (2002) The importance of the microstructure of snow in nature and engineering. In Brebbia, CA ed. Comparing design in nature with science and engineering. (Design and Nature 3) WIT Press, Southampton, 8793
Schneebeli, M (2004) Numerical simulation of elastic stress in the microstructure of snow. Ann. Glaciol., 38, 339342 (doi: 10.3189/172756404781815284)
Schneebeli, M and Sokratov, SA (2004) Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity. Hydrol. Process., 18(18), 36553665 (doi: 10.1002/hyp.5800)
Shapiro, LH, Johnson, JB, Sturm, M and Blaisdell, GL (1997) Snow mechanics: review of the state of knowledge and applications. CRREL Rep. 97–3
Srivastava, PK, Mahajan, P, Satyawali, PK and Kumar, V (2010) Observation of temperature gradient metamorphism in snow by X-ray computed microtomography: measurement of microstructure parameters and simulation of linear elastic properties. Ann. Glaciol., 51(54), 7382 (doi: 10.3189/172756410791386571)
Theile, T, Löwe, H, Theile, TC and Schneebeli, M (2011) Simulating creep of snow based on microstructure and the anisotropic deformation of ice. Acta Mater., 59(18), 71047113 (doi: 10.1016/j.actamat.2011.07.065)
Vetter, R, Sigg, S, Singer, HM, Kadau, D, Herrmann, HJ and Schneebeli, M (2010) Simulating isothermal aging of snow. Europhys. Lett., 89(2), 26001 (doi: 10.1209/0295-5075/89/26001)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed