Skip to main content Accessibility help
×
Home

Diurnal fluctuations in borehole water levels: configuration of the drainage system beneath Bench Glacier, Alaska, USA

  • T.J. Fudge (a1), Neil F. Humphrey (a2), Joel T. Harper (a3) and W. Tad Pfeffer (a4)

Abstract

Water levels were measured in boreholes spaced along the entire length of Bench Glacier, Alaska, USA, for a period in excess of 2 years. Instrumented boreholes were arranged as nine pairs along the center line of the glacier and an orthogonal grid of 16 boreholes in a 3600 m2 region at the center of the ablation area. Diurnal fluctuations of the water levels were found to be restricted to the late melt season. Pairs of boreholes spaced along the length of the ablation area often exhibited similar fluctuations and diurnal changes in water levels. Three distinct and independent types of diurnal fluctuations in water level were observed in clusters of boreholes within the grid of boreholes. Head gradients suggest water did not flow between clusters, and a single tunnel connecting the boreholes could not explain the observed pattern of diurnal water-level fluctuations. Inter-borehole and borehole-cluster connectivity suggests the cross-glacier width of influence of a segment of the drainage system connected to a borehole was limited to tens of meters. A drainage configuration whereby boreholes are connected to a somewhat distant tunnel by drainage pipes of differing lengths, often hundreds of meters, is shown with a numerical test to be a plausible explanation for the observed borehole behavior.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diurnal fluctuations in borehole water levels: configuration of the drainage system beneath Bench Glacier, Alaska, USA
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Diurnal fluctuations in borehole water levels: configuration of the drainage system beneath Bench Glacier, Alaska, USA
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Diurnal fluctuations in borehole water levels: configuration of the drainage system beneath Bench Glacier, Alaska, USA
      Available formats
      ×

Copyright

References

Hide All
Bradford, J.H. and Harper, J.T.. 2005. Wave field migration as a tool for estimating spatially continuous radar velocity and water content in glaciers. Geophys. Res. Lett., 32(8), L08502. (10.1029/2004GL021770.)
Engelhardt, H.F., Harrison, W.D. and Kamb, B.. 1978. Basal sliding and conditions at the glacier bed as revealed by bore-hole photography. J. Glaciol., 20(84), 469508.
Fountain, A.G. 1993. Geometry and flow conditions of subglacial water at South Cascade Glacier, Washington State, U.S.A.; an analysis of tracer injections. J. Glaciol., 39(131), 143156.
Fountain, A.G. 1994. Borehole water-level variations and implications for the subglacial hydraulics of South Cascade Glacier, Washington State, U.S.A. J. Glaciol., 40(135), 293304.
Fountain, A.G. and Walder, J.S.. 1998. Water flow through temperate glaciers. Rev. Geophys., 36(3), 299328.
Fountain, A.G., Jacobel, R.W., Schlichting, R. and Jansson, P.. 2005. Fractures as the main pathways of water flow in temperate glaciers. Nature, 433(7026), 618621.
Fudge, T.J., Harper, J.T., Humphrey, N.F. and Pfeffer, W.T.. 2005. Diurnal water-pressure fluctuations: timing and pattern of termination below Bench Glacier, Alaska, USA. Ann. Glaciol., 40, 102106.
Gordon, S., Sharp, M., Hubbard, B., Smart, C., Ketterling, B. and Willis, I.. 1998. Seasonal reorganization of subglacial drainage inferred from measurements in boreholes. Hydrol. Process., 12(1), 105133.
Gordon, S. and 7 others. 2001. Borehole drainage and its implications for the investigation of glacier hydrology: experiences from Haut Glacier d’Arolla. Hydrol. Process., 15(5), 797813.
Harper, J.T. and Humphrey, N.F.. 1995. Borehole video analysis of a temperate glacier’s englacial and subglacial structure: implications for glacier flow models. Geology, 23(10), 901904.
Harper, J.T., Humphrey, N.F. and Pfeffer, W.T.. 1998. Three-dimensional deformation measured in an Alaskan glacier. Science, 281(5381), 13401342.
Harper, J.T., Humphrey, N.F. and Greenwood, M.C.. 2002. Basal conditions and glacier motion during the winter/spring transition, Worthington Glacier, Alaska, U.S.A. J. Glaciol., 48(160), 4250.
Harper, J.T., Humphrey, N.F., Pfeffer, W.T., Fudge, T. and O’Neel, S.. 2005. Evolution of subglacial water pressure along a glacier’s length. Ann. Glaciol., 40, 3136.
Hartigan, J.A. 1975. Clustering algorithms. New York, John Wiley and Sons.
Hubbard, B.P., Sharp, M.J., Willis, I.C., Nielsen, M.K. and Smart, C.C.. 1995. Borehole water-level variations and the structure of the subglacial hydrological system of Haut Glacier d’Arolla, Valais, Switzerland. J. Glaciol., 41(139), 572583.
Iken, A. 1972. Measurements of water pressure in moulins as part of a movement study of the White Glacier, Axel Heiberg Island, Northwest Territories, Canada. J. Glaciol., 11(61), 5358.
Iken, A. and Bindschadler, R.A.. 1986. Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119.
Iken, A. and Truffer, M.. 1997. The relationship between sub-glacial water pressure and velocity of Findelengletscher, Switzerland, during its advance and retreat. J. Glaciol., 43(144), 328338.
Iken, A., Röthlisberger, H., Flotron, A. and Haeberli, W.. 1983. The uplift of Unteraargletscher at the beginning of the melt season – a consequence of water storage at the bed? J. Glaciol., 29(101), 2847.
Jansson, P. 1995. Water pressure and basal sliding on Storglaciären, northern Sweden. J. Glaciol., 41(138), 232240.
McGee, B.W., Harper, J.T., Humphrey, N.F. and Pfeffer, W.T.. 2003. Water flow through widespread and interconnected void spaces at depth in a temperate glacier. Eos, 84(46), F355.
Meier, M. and 9 others. 1994. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 1. Observations. J. Geophys. Res., 99(B8), 15,21915,229.
Murray, T. and Clarke, G.K.C.. 1995. Black-box modeling of the subglacial water system. J. Geophys. Res., 100(B7), 10,23110,245.
Nienow, P., Sharp, M. and Willis, I.. 1998. Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d’Arolla, Switzerland. Earth Surf. Process. Landf., 23(9), 825843.
Nye, J.F. 1976. Water flow in glaciers: jökulhlaups, tunnels and veins. J. Glaciol., 17(76), 181207.
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Reeve, E.J. 2006. The role of moulins in late summer subglacial hydrology. (PhD thesis, University of Montana.)
Röthlisberger, H., Iken, A. and Spring, U.. 1979. Piezometric observations of water pressure at the bed of Swiss glaciers. J. Glaciol., 23(89), 429430.
Sharp, M.J. and 6 others. 1993. Geometry, bed topography and drainage system structure of the Haut Glacier d’Arolla, Switzerland. Earth Surf. Process. Landf., 18(6), 557571.
Smart, C.C. 1996. Statistical evaluation of glacier boreholes as indicators of basal drainage systems. Hydrol. Process., 10(4), 599613.
Spring, U. and Hutter, K.. 1981. Numerical studies of jökulhlaups. Cold Reg. Sci. Technol., 4(3), 227244.
Sugiyama, S. and Gudmundsson, G.H.. 2004. Short-term variations in glacier flow controlled by subglacial water pressure at Lauteraargletscher, Bernese Alps, Switzerland. J. Glaciol., 50(170), 353362.
Willis, I.C. 1995. Intra-annual variations in glacier motion: a review. Progr. Phys. Geogr., 19(1), 61106.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed