Skip to main content Accessibility help
×
Home

Direct Observation of the Mechanism of Glacier Sliding Over Bedrock*

  • Barclay Kamb (a1) and E. LaChapelle (a2)

Abstract

At the head of a tunnel driven to bedrock in Blue Glacier, Washington, the mechanism of sliding of the glacier over bedrock has been investigated. This mechanism involves (1) regelation-slip, which operates through the combined action of heat transport and mass transport (liquid and solid) in the immediate neighborhood of the glacier sole; (2) plastic flow, promoted by stress concentrations in the basal ice. We have observed and/or measured the following features of the basal slip process: 1. Slip rate in relation to internal deformation of the ice; 2. Time-variations of the slip rate; 3. Freezing of basal ice to bedrock upon release of overburden pressure; 4. Formation of a regelation layer in the basal ice, and detailed behavior of this layer in relation to bedrock obstacles and to incorporated debris particles; 5. Local separation of ice from bedrock and continuous formation of regelation spicules in the open cavities thus created; 6. Plastic deformation of basal ice as recorded in the warping of foliation planes and of the regelation layer. Simple experiments to test our interpretation of the regelation layer have been carried out, in which regelation flow of solid cubes of different materials frozen into blocks of ice was produced. The field measurements and laboratory results are used to test the theory by Weertman (1957, 1962) of the basal slip mechanism. It is found that the theoretical “controlling obstacle size” and “controlling obstacle spacing” that should correspond to our observations are about an order of magnitude too small. This quantitative failure represents an overemphasis in the theory on the importance of plastic flow as compared to regelation. A new theory has been constructed which gives results in better agreement with observation.

Résumé

On a étudié au front d’un tunnel creusé jusqu’au lit rocheux du Blue Glacier (état de Washington) le mécanisme du glissement au fond du glacier sur le lit rocheux. Ce mécanisme comporte: (1) un glissement de “regélation”, qui s’effectue sous l’action combinée d’un transport de chaleur et de matière (liquide et solide) au voisinage immédiat du fond du glacier; (2) un écoulement plastique, nû aux concentrations des tensions dans la glace de fond. Nous avons observé et/ou mesuré les aspects suivants du processus de glissement de la glace sur le lit. (1) La vitesse de glissement en relation avec la déformation interne de la glace. (2) Des variations dans le temps de la vitesse de glissement. (3) Une congélation de la glace de fond jusqu’au bed-rock suivant le relâchement de la pression superposée. (4) La formation d’une couche de regélation dans la glace de fond; le comportement intime de cette couche vis-à-vis des obstacles du lit et vis-à-vis des particules de débris incorporées à la glace. (5) Localement, une séparation de la glace et du lit; la formation continue de spicules de regel dans les cavités ainsi formées. (6) Une déformation plastique de la glace de fond. comme celle qui est enregistrée dans le gauchissement des plans de foliation et de la couche de regélation. Des expériences simples ont été réalisées pour éprouver la valeur de notre interprétation de la couche de regélation. Dans celles-ci, on a produit l’écoulement de regélation de cubes solides de divers matériaux congelés et assimilés à des blocs de glace. Les mesures sur le terrain et au laboratoire sont utilisées pour éprouver la théorie de Weertman (1957, 1962) sur le mécanisme du glissement sur le fond. On trouve que la “grandeur des obstacles qui réglent l’écoulement” et que “l’espacement de ces obstacles”, théoriques, qui devraient correspondre à nos observations, sont d’un ordre de grandeur trop petit. Cette insuffisance quantitative montre qu’on accorde trop d’importance à la théorie de l’écoulement plastique par rapport au phénoménc de regélation. Une nouvelle théorie a été bâtie: elle donne des résultats plus en accord avec les observations.

Zusammenfassung

Am Ende eines in den Blue Glacier (Washington) gebohrten Tunnels wurde der Mechanismus des Gleitens auf der Felssohle untersucht. Das Gleiten vollzieht sich auf zwei Arten: (1) durch Regelation, d.h. Massen- und Wärmetransport in der flüssigen und festen Phase in unmittelbarer Nachbarschaft der Gletschersohle und (2) durch plastische Deformation als Folge der Spannungskonzentration in der untersten Eisschicht. Folgende Einzelheiten des Gleitprozesses wurden gemessen bzw. beobachtet: 1. Gleitgeschwindigkeit und ihr Zusammenhang mit der internen Eisdeformation. 2. Zeitliche Anderungen der Gleitgeschwindigkeit. 3. Anfrieren des Eises am Felsuntergrund nach Druckentlastung. 4. Bildung einer Regelationsschicht im aufliegenden Eis und ihr Verhalten im Hinblick auf Unebenheiten der Unterlage und eingeschlossenes Moränenmaterial. 5. Stellenweise Ablösung des Eises vom Felsgrand und kontinuierliche Bildung von Regelations-Eisnadeln in den entstandenen Hohlräumen. 6. Plastische Deformation des auf liegenden Eises, ablesbar aus der Verbiegung der Foliations-Flachen und der Regelationsschicht. Zur Prüfung der Richtigkeit unserer Interpretation der Regelationsschicht wurden starre Würfel aus verschiedenem Material in Eisblöcke eingefroren und ihre Bewegung unter dem Einfluss einer angelegten Spannung beobachtet. Diese Bewegung erfolgt durch Regelationsfliessen im Eis. An Hand der Ergebnisse der Feldbeobachtungen und Laborversuche wird die Weertman’sche Theorie des Gleitmechanismus (1957, 1962) an der Gletschcrsohle diskutiert. Die von der Theorie geforderten “wirksamen Hindernisgrössen” und “wirksamen Hindernisabstände” werden von der Beobachtung nicht bestätigt and sind in Wirklichkeit etwa eine Zehnerpotenz grösser. Diese quantitative Diskrepanz bedeutet, dass Weertman’s Theorie dem plastischen Fliessen eine im Vergleich zum Regelationsfliessen zu grosse Bedeutung beimisst. Eine neue, den Beobachtungen besser Rechnung tragende Theorie wird gegeben.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Direct Observation of the Mechanism of Glacier Sliding Over Bedrock*
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Direct Observation of the Mechanism of Glacier Sliding Over Bedrock*
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Direct Observation of the Mechanism of Glacier Sliding Over Bedrock*
      Available formats
      ×

Copyright

Footnotes

Hide All

Division of the Geological Sciences, Contribution No. 1147.

Department of Atmospheric Sciences, Contribution No. 78.

*

Paper presented at the I.U.G.G. General Assembly, Berkeley, 27 August 1963.

Footnotes

References

Hide All
Allen, C. R., and others. 1960. Structure of the lower Blue Glacier, Washington, by C. R. Allen W. B. Kamb M. F. Meier R. P. Sharp. Journal of Geology, Vol. 68, No. 6, p. 60125.
Carol, H. 1947. The formation of roches moutonnées . Journal of Glaciology, Vol. 1, No. 2, p. 5759.
Faraday, M. 1860. Note on regelation. Proceedings of the Royal Society, Vol. 10, p. 44050.
Gerrard, J. A. F., and others. 1952. Measurement of the velocity distribution along a vertical line through a glacier, by J. A. F. Gerrard M. F. Perutz A. Roch. Proceedings of the Royal Society, Ser. A, Vol. 213, No. 1115, p 54658.
Glen, J. W. 1955. The creep of polycrystalline ice. Proceedings of the Royal Society, Ser. A, Vol. 228, No. 1175, p 51938.
Glen, J. W. 1961. Measurement of the strain of a glacier snout. Union Géodésique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Assemblée générale de Helsinki, 25–7—6–8 1960. Commission des Neiges et Glaces, p. 56267.
Haefeli, R. 1951. Some observations on glacier flow. Journal of Glaciology, Vol. 1, No. 9, p. 496500.
Kamb, W. B. Shreve, R. L. 1963. Structure of ice at depth in a temperate glacier. Transactions. American Geophysical Union, Vol. 44, No. 1, p. 103. [Abstract.]
Kingery, W. D. 1960. Regelation, surface diffusion, and ice sintering. Journal of Applied Physics, Vol. 31, No. 5, p 83338.
LaChapelle, E. R. 1959. Annual mass and energy exchange on the Blue Glacier. Journal of Geophysical Research, Vol. 64, No. 4, p 44349.
McCall, J. G. 1952. The internal structure of a cirque glacier: report on studies of the englacial movements and temperatures. Journal of Glaciology, Vol. 2, No. 12, p. 12231.
Mathews, W. H. 1959. Vertical distribution of velocity in Salmon Glacier, British Columbia. Journal of Glaciology, Vol. 3, No. 26, p. 44854.
Nye, J. F. 1960. The response of glaciers and ice-sheets to seasonal and climatic changes. Proceedings of the Royal Society, Ser. A, Vol. 256, No. 1287, p. 55984.
Nye, J. F. 1963. Theory of glacier variations. (In Kingery, W. D., ed. Ice and snow; properties, processes, and applications: proceedings of a conference held at the Massachusetts Institute of Technology, February 12–16, 1962. Cambridge, Mass., The M.I.T. Press, p. 15161.)
Savage, J. C. Paterson, W. S. B. 1963. Borehole measurements in the Athabasca Glacier. Journal of Geophysical Research, Vol. 68, No. 15, p 452136.
Sharp, R. P. 1954. Glacier flow: a review. Bulletin of the Geological Society of America, Vol. 65, No. 9, p. 82138.
Shreve, R. L. 1961. The borehole experiment on Blue Glacier, Washington. Union Géodésique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Assemblée générale de Helsinki, 25–7—6–8 1960. Commission des Neiges et Glaces, p. 53031.
Thompson, J. 1860. On recent theories and experiments regarding ice at or near its melting point. Proceedings of the Royal Society, Vol. 10, p. 15260.
“Webster.” 1934. Webster’s new international dictionary of the English language. Second edition, unabridged. Springfield, Mass., G. and C. Merriam Co.
Weertman, J. 1957. On the sliding of glaciers. Journal of Glaciology, Vol. 3, No. 21, p. 3338.
Weertman, J. 1962. Catastrophic glacier advances. Union Géodésique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Commission des Neiges et Glaces. Colloque d’Obergurgl, 10–9—18–9 1962, p. 3139.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed