Skip to main content Accessibility help

Dielectric Properties of Ice and Snow–a Review

  • S. Evans (a1)


The permittivity and loss tangent of naturally occurring ice and snow are considered. The direct-current conductivity is considered only when it is of importance to the alternating-current and radio-frequency properties. Laboratory measurements on pure ice, and deliberately contaminated ice, are included to help in explaining and extrapolating the behaviour of natural ice and snow. The lower band of frequencies from 10 c./sec. to 1 Mc./sec. is occupied by a relaxation spectrum in which the relative permittivity falls from approximately 100 to 3. The loss tangent reaches a maximum at a frequency which varies from 50 c./sec. to 50 kc./sec. as the temperature increases from −60°C. to 0°C. We are interested in the effect of snow density, impurities, stress, crystal size, and orientation. For frequencies much greater than 1 Mc./sec., the relative permittivity is 3.17±0.07. The loss tangent reaches a minimum value at approximately 1,000 Mc./sec. beyond which the dominant influence is infrared absorption. The minimum is 10−3 at 0°C or 2×10−5 at −60°C. These values are greatly increased by impurities or free water. Some possible applications to glaciological field measurements are mentioned.


Revue des propriétés diélectriques de la glace et la neige. La permitivité et le facteur de perte de la glace et de la neige naturellement rencontrées sont discutés. La conductivité en courant continu est seulement considérée dans la mesure où elle est importante pour les propriétés des courants alternatifs et des fréquences radio. Des mesures de laboratoire sur de la glace pure, ou artificiellement impure, sont ajoutées pour aider l’explication et l’extrapolation du comportement de la glace et de la neige naturelle. La basse bande de fréquences de to Hz à 1 MHz est occupée par un spectre de relaxation où la permitivité relative tombe de 100 à 3. Le facteur de perte atteint un maximum pour une fréquence qui varie de 50 Hz à 50 kHz lorsque la température croit de −60°C à 0°C. Nous sommes intéressés par l’effet de la densité de la neige, des impuretés, des contraintes, des dimensions des cristaux et de leur orientation. Pour les fréquences supérieures à 1 MHz. la permitivité relative est de 3,17+0,07. Le facteur de perte atteint un minimum pour environ 1000 MHz au-delà de laquelle l’influence dominante est une absorption infra-rouge. Le minimum est 10−3 à 0°C ou 2.10−5 à −60°C. Ces valeurs sont considérablement augmentées par des impuretés ou de l’eau libre. Quelques applications possibles à la glaciologie sont mentionnées.


Dielektrische Eigenschaften von Eis und Schnee—eine Übersicht. Die Durchlässigkeit und die Schwundgrenze von natürlichem Eis und Schnee werden untersucht. Die Gleichstrom-Konduktivität wird nur dann in Betracht gezogen, wenn sie für das Verhalten des Wechselstromes und der Radio-Frequenzen von Bedeutung ist. Zur Deutung und Extrapolation des Verhaltens von natürlichem Eis und Schnee werden Labormessungen an reinem Eis und künstlich verschmutztem Eis herangezogen. Der niedrige Frequenzbereich von 10 Hz bis 1 MHz wird von einem Relaxationsspektrum eingenommen, in dem die relative Durchlässigkeit von ca. 100 auf 3 abfällt. Die Schwundgrenze erreicht ein Maximum bei einer Frequenz, die von 50 Hz bis 50 KHz wechselt, wenn die Temperatur von −60°C auf 0°C ansteigt. Weiter interessiert der Einfluss der Dichte, der Verunreinigungen, der Spannung, der Kristallgrösse und -orientierung. Für Frequenzen über 1 MHz beträgt die relative Durchlässigkeit 3,17+0,07. Die Schwundgrenze erreicht ein Minimum bei ca. 1000 MHz; jenseits davon ist die Infrarot-Absorption der dominierende Einfluss. Das Minimum beträgt 10−3 bei 0°C oder 2.10−5 bei −60°C. Diese Werte werden durch Verunreinigungen oder freies Wasser beträchtlich erhöht. Einige Anwendungsmöglichkeiten für glaziologische Feldmessungen werden erwähnt.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dielectric Properties of Ice and Snow–a Review
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dielectric Properties of Ice and Snow–a Review
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dielectric Properties of Ice and Snow–a Review
      Available formats



Hide All
Ambach, W. 1963. Untersuchungen zum Energieumsatz in der Ablationzone des grönländischen Inlandeises (Camp IV-EGIG, 69° 40′ 05′′ N, 49° 37′ 58′′ W). Meddelelser orn Grenland, Bd 174, Nr. 4.
Auty, R. P. Cole, R. H. 1952. Dielectric properties of ice and solid D,O. Journal of Chemical Physics, Vol. 20, No. 8, p. 130914.
Brill, R. 1957. Structure of ice. U.S. Snow, Ice and Permafrost Research Establishment. Report 33.
Cole, K. S. Cole, R. H. 1941. Dispersion and absorption in dielectrics. 1. Alternating current characteristics. Journal of Chemical Physics, Vol. 9, No. 4, p 34151.
Cumming, W. A. 1952. The dielectric properties of ice and snow at 3.2 centimeters. Journal of Applied Physics, Vol. 23, No. 7, p. 76873.
Dichtel, W. J. Lundquist, G. A. 1951. An investigation into the physical and electrical characteristics of sea ice. Bulletin of the. National Research Council of the U.S., No. 122, p. 122. [Abstract.]
Evans, S. 1963. Radio techniques for the measurement of ice thickness. Polar Record, Vol. 11, No. 73. p. 40610; No. 75, p. 795.
Gränicher, H. 1963. Properties and lattice imperfections of ice crystals and the behaviour of H2O-HF solid solutions. Physik der kondensierten Materie, Bd. 1, Ht. 1. p. 112.
Gränicher, H., and others. 1957. Dielectric relaxation and the electrical conductivity of ice crystals, by H. Gränicher, C. Jaccard, P. Scherrer and A. Stcinemann. Discussion of the Faraday Society, No. 23, p. 5062.
Hasted, J. B. 1961. The dielectric properties of water. Progress in Dielectrics, Vol. 3. p. 10149.
Hatherton, T. 1960. Electrical resistivity of frozen earth. Journal of Geophysical Research, Vol. 65, No. 9, p. 302324.
Humbel, F., and others. 1953. Anisotropie der Dielektrizitätskonstante des Eises, von F. Humbel, F. Jona und P. Scherrer. Helvetica Physica Ada, Vol. 26, Fasc. 1, p. 1732.
Kopp, M. 1962. Conductivité électrique de la neige, au courant continu. Zeitschrift, für angewandte Mathematik und Physik, Bd. 13, Ht. 5, P. 43141.
Kuroiwa, D. [1956.] The dielectric property of snow. Union Géodésique e Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Assemblée générale de Rome 1954, Tom. 4, p. 5263.
Lamb, J. 1946. Measurements of the dielectric properties of ice. Transactions of the Faraday Society. Vol. 42A, p. 23844.
Lamb, J. Turncy, A. 1949. The dielectric properties of ice at 125 cm. wavelength. Proceedings of the Physical Society, Sect. B, Vol. 62, Pt. 4, p. 27273.
Ockman, N. 1958. The infrared and Raman spectra of ice. Advances in Physics, Vol. 7, No. 26, p. 199220.
Powles, J. G. 1952. A calculation of the static dielectric constant of ice. Journal of Chemical Physics, Vol. 20, No. p, 130209.
Ragle, H., and others. 1964 Ice core studies of Ward Hunt Ice Shelf, 1960, by R. H. Ragle, R. G. Blair and L. E. Persson. Journal of Glaciology, Vol. 5, No. 37, p. 3959.
Sillars, R. W. 1937. The properties of a dielectric containing semi-conducting particles of various shapes. Journal of the Institution of Electrical Engineers, Vol. 80, No. 484, p. 37894.
Stanley, G. M. 1958. Studies of ground conductivity in the Territory of Alaska. University of Alaska. Geophysical Report Series, UAG-R81.
Vieweg, R. Gast, T. 1943. Ein Beitrag zur Ermittlung der Dielektrizitätskonstanten von Mischkörpen. Zeitschrift für Technische Physik, [Bd.] 24., Nr. 3, p. 5662.
Von Hippel, A., ed. 1954. Dielectric materials and applications. Cambridge, Mass., Technology Press of Massachusetts Institute of Technology; New York, John Wiley and Sons, Inc.; London, Chapman and Hall, Ltd.
Wagner, K. W. 1913. Zur Theorie der unvolkommenen Dielektrika. Annalen der Physik, 4. Folge, Bd. 40, No. 5, p. 81755.
Watt, A. D. Maxwell, E. L. 1960. Measured electrical properties of snow an glacial ice. Journal of Research of the National Bureau of Standards (Washington, D.C.), Sect. D, Vol. 64, No. 4, p. 35763.
Weiner, O. 1910. Zur Theorie der Refraktionskonstanten. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-physikalische Klasse, Bd. 62, Ht. 5, p. 25668.
Wescott, E. M. Hessler, V. P. 1960. The effect of topography and geology on telluric currents. University of Alaska. Geophysical Report Series, UAG-R 107.
Yoshino, T. 1961. Radio wave propagation on the ice cap. Antarctic Record (Tokyo), No. 11, p. 22833.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed