Skip to main content Accessibility help
×
×
Home

Development of the British Antarctic Survey Rapid Access Isotope Drill

  • JULIUS RIX (a1), ROBERT MULVANEY (a1), JIALIN HONG (a2) and DAN ASHURST (a1)

Abstract

The British Antarctic Survey Rapid Access Isotope Drill is an innovative new class of electromechanical ice drill, which has recently been used to drill the deepest dry hole drilled by an electromechanical auger drill. The record-breaking depth of 461.58 m was drilled in just over 104 hours at Little Dome C. The drill collects ice chippings, for water stable isotope analysis, rather than an ice core. By not collecting a core the winch can be geared for speed rather than core breaking and is lightweight. Furthermore, emptying of the chippings is performed by simply reversing the drill motor on the surface reducing the overall drilling time significantly. The borehole is then available for instrumentation. We describe the drill in its current state including modifications carried out since it was last deployed. Test seasons and the lessons learned from each are outlined. Finally, future developments for this class of drill are discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Development of the British Antarctic Survey Rapid Access Isotope Drill
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Development of the British Antarctic Survey Rapid Access Isotope Drill
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Development of the British Antarctic Survey Rapid Access Isotope Drill
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Julius RIX <jrix@bas.ac.uk>

References

Hide All
Alemany, O and 21 others (2014) The SUBGLACIOR drilling probe: concept and design. Ann. Glaciol., 55(68), 233242 (doi: 10.3189/2014AoG68A026)
ASABE Standards (2006) ANSI/ASAE EP389.2 JUN1993, (R2005). Auger flighting design considerations. ASABE, St. Joseph, Mich
Bentley, CR and 12 others (2009) Chapter 4. Ice drilling and coring. In Bar-Chohen, Y and Zacny, K, eds. Drilling in extreme environments: penetration an sampling on earth and other planets. Wiley-VCH, Weinhein, 221308 (doi: 10.1002/9783527626625.ch4)
Burton-Johnson, A, Black, M, Fretwell, P and Kaluza-Gilbert, J (2016) An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere, 10, 16651677 (doi: 10.5194/tc-10-1665-2016)
Clow, GD and Koci, B (2002) A fast mechanical-access drill for polar glaciology, paleoclimatology, Gelology, tectonics, and biology. Mem. Natl. Inst. Polar Res., Spec. Issue, 56, 537
Goodge, JW and Severinghaus, JP (2016) Rapid access ice drill: a new tool for exploration of the deep Antarctic ice sheets and subglacial geology. J. Glaciol., 62, 10491064 (doi: 10.1017/jog.2016.97)
Hindmarsh, RCA and Ritz, CM (2012) How deep do you need to drill through ice to measure the geothermal heat flux? Geophys. Res. Abstracts, 14, EGU2012-8629
Machinability Data Center (1987) Machining data handbook, 3rd edn. MDC, Cincinnati, Ohio
Mulvaney, RM, Bremner, S, Tait, A and Audley, N (2002) A medium-depth ice core drill.In Ice Drilling Technology 2000. Proceedings of the Fifth International Workshop on Ice Drilling Technology, Tokyo, 2000. Tokyo, National Institute of Polar Research, 82–90. (Memoirs of National Institute of Polar Research special issue (no. 56)) (doi: 10.1126/sciadv.1500093)
Nicholls, KW and 5 others (2015) A ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice sheets and shelves. J. Glaciol., 61, 10791087 (doi: 10.3189/2015JoG15J073)
Olds, R, Olds, W, Bates, L and MacIntosh, R (2006) A Radical Approach to the Vertical Conveyance of Bulk Material: the Olds Elevator Paper presented to Houston Material Handling Society, September 19th, Houston, Texas
Rapid Access Ice Drill (2018) Rapid Access Ice Drill Scientific Research - RAID. [online] Available at: http://www.rapidaccessicedrill.org [Accessed 23rd December 2018]
Schwander, J, Marending, S, Stocker, TF and Fischer, H (2014) RADIX: a minimal-resources rapid-access drilling system. Ann. Glaciol., 55(68), 3438 (doi: 10.3189/2014AoG68A015)
Suzuki, Y and Shiraishi, K (1982) The drill system used by the 21st Japanese Antarctic Research Expedition and its later improvement. Memoirs of National Institute of Polar Research special issue, 24, 259273
Talalay, PG (2003) Power consumption of deep ice electromechanical drills. Cold. Reg. Sci. Technol., 37, 6979 (doi: 10.1016/S0165-232X(03)00036-3)
Talalay, PG (2016) Mechanical ice drilling technology. Geological Publishing House, Beijing and Springer Science + Business Media, Singapore (doi: 10.1007/978-981-10-0560-2)
Whilhelms, F and 7 others (2004) White Paper: Ice Core Drilling Technical Challenges International Partnerships in Ice Core Sciences (http://pastglobalchanges.org/ini/end-aff/ipics/white-papers)
Witze, A (2015) Super-fast Antarctic drills ready to hunt for oldest ice. Nature, 526, 618619
Wolff, E and 6 others (2006) White Paper: The oldest ice core: A 1.5 million year record of climate and greenhouse gases from Antarctica International Partnerships in Ice Core Sciences (http://pastglobalchanges.org/ini/end-aff/ipics/white-papers)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Rix et al. supplementary material
Rix et al. supplementary material 1

 PDF (1.1 MB)
1.1 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed