Skip to main content Accessibility help

Dense avalanche friction coefficients: influence of physical properties of snow

  • Mohamed Naaim (a1), Yves Durand (a1), Nicolas Eckert (a1) and Guillaume Chambon (a1)


The values of the Voellmy friction parameters of 735 historical avalanches that have occurred along 26 paths in the Chamonix valley, France, since 1958 are back-analyzed with a depth-averaged hydraulic model, including sub-models for erosion, entrainment and deposition. For each path, the longitudinal and crosswise topographic profiles were derived from a high-resolution digital elevation model acquired by laser scanning. The initial snow depth and snow cohesion, as well as various physical properties of snow, were computed from numerical simulations of the detailed snowpack model Crocus fed by the SAFRAN meteorological analysis. For each event, the full ranges of the two friction parameters were scanned and the pairs of friction parameters for which the run-out altitude is found close enough to the observed one (with an uncertainty of ±5 m) were retained. Statistical class analysis was used to investigate the correlation between the obtained friction coefficients and the snow physical properties. No evident trend with the snow parameters was found for the inertial friction coefficient. For the static friction coefficient, an increasing trend with temperature and density was observed, as well as a decreasing trend with liquid water content and initial snow depth. Although modeling assumptions and limitations regarding data and the calibration procedure should be kept in mind, these trends are worth noting, allowing avalanche simulations to be refined to take into account prevailing weather and snow conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dense avalanche friction coefficients: influence of physical properties of snow
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dense avalanche friction coefficients: influence of physical properties of snow
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dense avalanche friction coefficients: influence of physical properties of snow
      Available formats



Hide All
Ancey, C (2005) Monte Carlo calibration of avalanches described as Coulomb fluid flows. Philos. Trans. R. Soc. London, Ser. A, 363(1832), 15291550 (doi: 10.1098/rsta.2005.1593)
Ancey, C and Meunier, M (2004) Estimating bulk rheological properties of flowing snow avalanches from field data. J. Geophys. Res., 109(F1), F01004 (doi: 10.1029/2003JF000036)
Ancey, C, Rapin, F, Martin, E, Coléou, C, Naäm, M and Brunot, G (2000) Péclerey avalanche of February 9th 1999. Houille Blanche, 5, 4553
Ancey, C, Meunier, M and Richard, D (2003) Inverse problem in avalanche dynamics models. Water Resour. Res., 39(4), 1099 (doi: 10.1029/2002WR001749)
Ancey, C, Gervasoni, C and Meunier, M (2004) Computing extreme avalanches. Cold Reg. Sci. Technol., 39(2–3), 161180 (doi: 10.1016/j.coldregions.2004.04.004)
Barbolini, M and Savi, F (2001) Estimate of uncertainties in avalanche hazard mapping. Ann. Glaciol., 32, 299305 (doi: 10.3189/172756401781819373)
Barbolini, M, Gruber, U, Keylock, CJ, Naaim, M and Savi, F (2000) Application of statistical and hydraulic-continuum dense-snow avalanche models to 5 real European sites. Cold Reg. Sci. Technol., 31(2), 133149 (doi: 10.1016/S0165-232X(00)00008-2)
Bartelt, P, Salm, B and Gruber, U (1999) Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/ passive longitudinal straining. J. Glaciol., 45(150), 242254
Bartelt, P, Bühler, Y, Buser, O, Christen, M and Meier, L (2012) Modeling mass-dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches. J. Geophys. Res., 117(F1), F01015 (doi: 10.1029/2010JF001957)
Bouchet, A, Naaim, M, Bellot, H and Ousset, F (2004) Experimental study of dense snow avalanches: velocity profiles in steady and fully developed flows. Ann. Glaciol., 38, 3034 (doi: 10.3189/172756404781815130)
Brugnot, G and Pochat, R (1981) Numerical simulation study of avalanches. J. Glaciol., 27(95), 7788
Brun, E, Martin, E, Simon, V, Gendre, C and Coléou, C (1989) An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol., 35(121), 333342
Brun, E, David, P, Sudul, M and Brunot, G (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol., 38(128), 1322
Bundesamt for Forstwesen/Eidgenössisches Institut for Schnee- und Lawinenforschung (BFF/SLF) (1984) Richtlinien zur Berücksichtigung der Lawinengefahr bei raumwirksamen Tätigkeiten. Eidgenössische Drucksachen- und Materialzentrale, Bern
Buser, O and Bartelt, P (2009) Production and decay of random kinetic energy in granular snow avalanches. J. Glaciol., 55(189), 312 (doi: 10.3189/002214309788608859)
Buser, O and Frutiger, H (1980) Observed maximum run-out distance of snow avalanches and the determination of the friction coefficients μ and ξ . J. Glaciol., 26(94), 121130
Casassa, G, Narita, H and Maeno, N (1991) Shear cell experiments of snow and ice friction. J. Appl. Phys., 69(6), 37453756 (doi: 10.1063/1.348469)
Castebrunet, H, Eckert, N and Giraud, G (2012) Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps. Climate Past, 8(2), 855875 (doi: 10.5194/cp-8-855-2012)
Dade, W and Huppert, H (1998) Long-runout rockfalls. Geology, 26(9), 803806
Dent, JD, Burrell, KJ, Schmidt, DS, Louge, MY, Adams, EE and Jazbutis, TG (1998) Density, velocity and friction measurements in a dry-snow avalanche. Ann. Glaciol., 26, 247252
Durand, Y, Brun, E, Mérindol, L, Guyomarc’h, G, Lesaffre, B and Martin, E (1993) A meteorological estimation of relevant parameters for snow models. Ann. Glaciol., 18, 6571
Durand, Y, Giraud, G, Brun, E, Mérindol, L and Martin, E (1999) A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting. J. Glaciol., 45(151), 469484
Durand, Y, Laternser, M, Giraud, G, Etchevers, P, Lesaffre, B and Mérindol, L (2009a) Reanalysis of 44 yr of climate in the French Alps (1958–2002): methodology, model validation, climatology, and trends for air temperature and precipitation. J. Appl. Meteorol. Climatol., 48(3), 429449 (doi: 10.1175/2008JAMC1808.1)
Durand, Y, Giraud, G, Laternser, M, Etchevers, P, Mérindol, L and Lesaffre, B (2009b) Reanalysis of 47 years of climate in the French Alps (1958–2005): climatology and trends for snow cover. J. Appl. Meteorol. Climatol., 48(12), 24872512 (doi: 10.1175/2009JAMC1810.1)
Eckert, N, Parent, E and Richard, D (2007) Revisiting statistical– topographical methods for avalanche predetermination: Bayesian modelling for runout distance predictive distribution. Cold Reg. Sci. Technol., 49(1), 88107 (doi: 10.1016/j.coldregions.2007.01.005)
Eckert, N, Parent, E, Naaim, M and Richard, D (2008a) Bayesian stochastic modelling for avalanche predetermination: from a general system framework to return period computations. Stoch. Environ. Res. Risk Assess., 22(2), 185206 (doi: 10.1007/s00477-007-0107-4)
Eckert, N, Parent, E, Faug, T and Naaim, M (2008b) Optimal design under uncertainty of a passive defense structure against snow avalanches: from a general Bayesian framework to a simple analytical model. Natur. Hazards Earth Syst. Sci. (NHESS), 8(5), 10671081 (doi: 10.5194/nhess-8-1067-2008)
Eckert, N, Parent, E, Faug, T and Naaim, M (2009) Bayesian optimal design of an avalanche dam using a multivariate numerical avalanche model. Stoch. Environ. Res. Risk Assess., 23(8), 11231141 (doi: 10.1007/s00477-008-0287-6)
Eckert, N, Naaim, M and Parent, E (2010a) Long-term avalanche hazard assessment with a Bayesian depth-averaged propagation model. J. Glaciol., 56(198), 563586 (doi: 10.3189/002214310793146331)
Eckert, N, Parent, E, Kies, R and Baya, H (2010b) A spatio-temporal modelling framework for assessing the fluctuations of avalanche occurrence resulting from climate change: application to 60 years of data in the northern French Alps. Climatic Change, 101(3–4), 515553 (doi: 10.1007/s10584-009-9718-8)
Eckert, N, Baya, H and Deschatres, M (2010c) Assessing the response of snow avalanche runout altitudes to climate fluctuations using hierarchical modeling: application to 61 winters of data in France. J. Climate, 23(12), 31573180 (doi: 10.1175/2010JCLI3312.1)
Eckert, N and 6 others (2012) Quantitative risk and optimal design approaches in the snow avalanche field: review and extensions. Cold Reg. Sci. Technol., 79–80, 119 (doi: 10.1016/j.coldregions.2012.03.003)
Eckert, N, Keylock, CJ, Castebrunet, H, Lavigne, A and Naaim, M (2013) Temporal trends in avalanche activity in the French Alps and subregions: from occurrences and runout altitudes to unsteady return periods. J. Glaciol., 59(213), 93114 (doi: 10.31 89/2013JoG12J091)
Gauer, P, Medina-Cetina, Z, Lied, K and Kristensen, K (2009) Optimization and probabilistic calibration of avalanche block models. Cold Reg. Sci. Technol., 59(2–3), 251258 (doi: 10.1016/j.coldregions.2009.02.002)
Gray, JMNT, Wieland, M and Hutter, K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. London, Ser. A, 455(1985),18411874 (doi: 10.1098/rspa.1999.0383)
Harbitz, CB (1998) SAME: Snow Avalanche Modelling, Mapping and Warning in Europe. Nor. Geotech. Inst. Rep. 581220-1.
Kern, M, Bartelt, P, Sovilla, B and Buser, O (2009) Measured shear rates in large dry and wet snow avalanches. J. Glaciol., 55(190), 327338 (doi: 10.3189/002214309788608714)
Kulikovskii, AG and Eglit, ME (1973) Two-dimensional problem of the motion of a snow avalanche along a slope with smoothly changing properties. J. Appl. Math. Mech., 37(5), 792803 (doi: 10.1016/0021-8928(73)90008-7)
Lavigne, A, Bel, L, Parent, E and Eckert, N (2012) A model for spatiotemporal clustering using multinomial probit regression: application to avalanche counts in the French Alps. Envirometrics, 23(6), 522534 (doi: 10.1002/env.2167)
Meunier, M and Ancey, C (2004) Towards a conceptual approach to predetermining long-return-period avalanche run-out distances. J. Glaciol., 50(169), 268278 (doi: 10.3189/172756504781830178)
Meunier, M, Ancey, C and Naaim, M (2001) Mise au point d’une méthode de prédétermination statistique des cotes d’arr^et d’avalanches. Houille Blanche, 6–7, 9298 (doi: 10.1051/lhb/2001077)
Meunier, M, Ancey, C and Taillandier, J-M (2004) Fitting avalanche-dynamics models with documented events from the Col du Lautaret site (France) using the conceptual approach. Cold Reg. Sci. Technol., 39(1), 5566 (doi: 10.1016/j.coldregions.2004.03.004)
Naaim, M, Naaim-Bouvet, F, Faug, T and Bouchet, A (2004) Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects. Cold Reg. Sci. Technol., 39(2–3), 193204 (doi: 10.1016/j.coldregions.2004.07.001)
Naaim, M, Faug, T, Naaim, F and Eckert, N (2010) Return period calculation and passive structure design at the Taconnaz avalanche path, France. Ann. Glaciol., 51(54), 8997 (doi: 0.3189/172756410791386517)
Nishimura, K and Maeno, N (1987) Experiments on snow-avalanche dynamics. IAHS Publ. 162 (Symposium at Davos 1986 – Avalanche Formation, Movement and Effects), 395404
Pudasaini, SP and Hutter, K (2007) Avalanche dynamics: dynamics of rapidflows of dense granularavalanches. Springer-Verlag, Berlin
Rognon, PG, Roux, J-N, Naäim, M and Chevoir, F (2007) Dense flows of bidisperse assemblies of disks down an inclined plane. Phys. Fluids, 19, 058101 (doi: 10.1063/1.2722242)
Rousselot, M, Durand, Y, Giraud, G, Merindol, L and Daniel, L (2010) Analysis and forecast of extreme new-snow avalanches: a numerical study of the avalanche cycles of February 1999 in France. J. Glaciol., 56(199), 758770 (doi: 10.3189/002214310794457308)
Savage, SB (1979) Gravity flows of cohesionless granular materials in chutes and channels. J. Fluid Mech., 92, 5396
Straub, D and Gret-Regamey, A (2006) A Bayesian probabilistic framework for avalanche modelling based on observations. Cold Reg. Sci. Technol., 46(3), 192203 (doi: 10.1016/j.coldregions.2006.08.024)
Vila, JP (1986) Simplified Godunov schemes for 2 × 2 systems of conservation. SIAM J. Num. Anal., 23(6), 11731192 (doi: 10.1137/0723079)
Voellmy, A (1955) Über die Zerstörungskraft von Lawinen. Schweiz. Bauztg., 73(12/15/17/19), 159162, 212–217, 246–249, 280–285


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed