Skip to main content Accessibility help
×
Home

Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adélie, Antarctica)

  • J. -L Tison (a1), J. -R. Petit (a2), J. -M. Barnola (a3) and W. C. Mahaney (a4)

Abstract

The debris-rich ice from the bottom 6 m of the 82 m deep CAROLINE (Coastal Antarctic Record of Last Interglacial Natural Environment) ice core reaching bedrock, and from five 2 m long surface cores at Moraine Prudhomme in Terre Adélie (Antarctica) is described and compared to debris-laden ice from the core-drilling site DIO. Isotopic, total-gas content, CO2 concentration and SEM investigations of embedded particles, together with ice textures and fabrics, rule out “pressure-melting” regelation around bed obstacles or “freezing-on” as possible mechanisms for the debris entrainment at the ice-bedrock interface. It is suggested that the debris entrapment by purely mechanical means (e.g. shearing) is an efficient process in forming basal ice layers (BIL) at sub-freezing temperatures. This process might be dominant at the margin of the Antarctic ice sheet where no ice shelf exists and where a ramp terminus or a buttressing coastal relief induces compressive flow.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adélie, Antarctica)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adélie, Antarctica)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adélie, Antarctica)
      Available formats
      ×

Copyright

References

Hide All
Alley, R.B. 1988. Fabrics in polar ice sheets: development and prediction. Science, 240, 493495.
Anderton, P.W. 1974. Ice fabrics and petrography, Meserve Glacier, Antarctica. F. Glaciol., 13(68), 285306.
Andrews, J.T. 1971. Correspondence. Englacial debris in glaciers. F. Glaciol., 10(60), 410.
Barnola, J.M., Raynaud, D., Neftel, A. and Oeschger, H. 1983. Comparison of CO2 measurements by two laboratories on air from bubbles in polar ice. Nature, 303(5916), 410413.
Barnola, J.M., Raynaud, D., Korotkevitch, Ye.S. and Lorius, C. 1987. Vostok ice core provides 160,000-year record of atmospheric CO2 . Nature, 329(6138), 408414.
Bell, J.D., Myatt, R.W. and Richards, R.E. 1971. Proton magnetic resonance evidence of a liquid phase in polycrystalline ice. Nature, 230 (12), 9192.
Bellair, P., Tourenq, J. and Vernhet, S. 1964. Un échantillon de moraine interne du Glacier de l’Astrolabe (Terre Adélie). Rev. Géogr. Phys. Géol. Dyn., 6(2), 115121.
Bishop, B.C. 1957. Shear moraines in the Thule area, northwest Greenland. SIPRE Res. Rep. 17.
Boulton, G.S. 1970. On the origin and transport of englacial debris in Svalbard glaciers. F. Glaciol., 9(56), 213229.
Boulton, G.S. 1975. Processes and patterns of subglacial sedimentation: a theoretical approach. In 0Wright, A. E. and Moseley, F. eds. Ice ages: ancient and modern. Liverpool, Seel House Press, 742.
Budd, W.F. 1972. The development of crystal orientation fabrics in moving ice. Z. Gletscherkd. Glazialgeol., 8(1–2), 65105.
Dilabio, R.N.W. and Shilts, W.W. 1979. Composition and dispersal of debris by modern glaciers, Bylot Island, Canada. In Schlüchter, C. ed. Moraines and varves: origin, genesis, classification. Rotterdam, Balkema, 145155.
Dudley, R.M., Perkins, P.C. and Gine, M.E. 1975. Statistical tests for preferred orientation. F. Geol., 83(6), 685706.
Echelmeyer, K. and Wang Zhongxiang. 1987. Direct observation of basal sliding and deformation of basal drift at sub-freezing temperatures. F. Glaciol., 33(113), 8398.
Goldthwait, R.P. 1951. Development of end moraines in east-central Baffin Island. F. Geol., 59(6), 567577.
Gow, A.J. and Williamson, T. 1976. Rheological implications of the internal structure and crystal fabrics of the West Antarctic ice sheet as revealed by deep core drilling at Byrd Station. CRREL Rep. 7635.
Gow, A.J., Ueda, H.T. and Garfield, D.E. 1968. Antarctic ice sheet: preliminary results of first core hole to bedrock. Science, 161(3845), 10111013.
Gow, A.J., Epstein, S. and Sheehy, W. 1979. On the origin of stratified debris in ice cores from the bottom of the Antarctic ice sheet. F. Glaciol., 23(89), 185192.
Herron, S. and Langway, C.C. Jr., 1979. The debris-laden ice at the bottom of the Greenland ice sheet. F. Glaciol., 23(89), 193207.
Jouzel, J. and Souchez, R.A. 1982. Melting-refreezing at the glacier sole and the isotopic composition of the ice. F. Glaciol., 28(98), 3542.
Jouzel, J. and 6 others. 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature, 329(6138), 403408.
Jouzel, J. and 9 others. 1989. A comparison of deep Antarctic ice cores and their implications for climate between 65,000 and 15,000 years ago. Quat. Res., 31(2), 135150.
Kamb, W.B. 1959. Ice petrofabric observations from Blue Glacier, Washington, in relation to theory and experiment. F. Geophys. Res., 64(11), 18911909.
Kamb, W.B. 1972. Experimental recrystallization of ice under stress. In Heard, H. C., Borg, I.Y., Carter, Ν. L. and Raleigh, C.B. eds. Flow and fracture of rocks. Washington, DC, American Geophysical Union, 211241. (Geophysical Monograph 16.)
Koerner, R.M. 1989. Ice core evidence for extensive melting of the Greenland ice sheet in the last interglacial. Science, 244(4907), 964968.
Koerner, R.M. and Fisher, D.A. 1979. Discontinuous flow, ice texture, and dirt content in the basal layers of the Devon Island Ice Cap. F. Glaciol., 23(89), 209222.
Krinsley, D. and Doornkamp, J. 1973. Atlas of quartz sand surface textures. Cambridge, Cambridge University Press.
Kvlividze, V.l., Kiselev, V.F., Kurzayev, A.B. and Ushakova, L.A. 1974. The mobile water phase on ice surfaces. Surf. Sci., 44, 6068.
Lorius, C. 1968. A physical and chemical study of the coastal ice sampled from a core drilling in Antarctica. International Association of Scientific Hydrology Publication 79 (General Assembly of Bern 1967 — Snow and Ice), 141148.
Lorius, C. and Merlivat, L. 1977. Distribution of mean surface stable isotope values in East Antarctica: observed changes with depth in the coastal area.International Association of Hydrological Sciences Publication 118 (Symposium at Grenoble 1975Isotopes and impurities in snow and ice), 127137.
Lorius, C. and Vallon, M. 1967. Étude structurographique d’un glacier antarctique. C. R. Acad. Sci. (Paris), Sér, D, 265, 315318.
Lorius, C., Raynaud, D. and Dolle, L. 1968. Densité de la glace et étude des gaz en profondeur dans un glacier antarctique. Tellus, 20(3), 449459.
Mader, H.M. 1990. Water veins in polycrystalline ice. (Ph.D. thesis, University of Bristol.)
Mahaney, W.C. 1990a. Ice on the Equator. Sister Bay, WI, Wm. Caxton Ltd.
Mahaney, W.C. 1990b. Macrofabrics and quartz micro-structures confirm glacial origin of Sunnybrook drift in the Lake Ontario Basin. Geology, 18, 145148.
Mahaney, W.C. In press. Glacial crushing, weathering and diagenetic histories of quartz grains inferred from scanning electron microscopy. In Menzies, J. ed. Glacial environments — processes, sediments and landforms. New York, Pergamon Press.
Mahaney, W.C., Vortisch, W.B. and Julig, P. 1988. Relative differences between glacially crushed quartz transported by mountain and continental ice — some examples from North America and East Africa. Am. F. Sci., 288(8), 810826.
Merlivat, L., Lorius, C. and Nief, G. 1966. Étude isotopique d’un glacier en Antarctique. C. R. Acad. Sci. (Paris), 263, 414416.
Merlivat, L., Lorius, C., Majzoub, M., Nief, G. and Roth, E. 1967. Études isotopiques en profondeur d’un glacier en Antarctique. Isotopes in hydrology. Vienna, International Atomic Energy Agency, 671681.
Nougier, J. et Lorius, C. 1969. Étude géologique et physico-chimique de carottes profondes de glace (Terre Adélie). Rev. Géogr. Phys. Géol. Dyn., 11(2), 165170.
Paren, J.G. and Walker, J.C.F. 1971. Influence of limited solubility on the electrical and mechanical properties of ice. Mature. Physical Science, 230(12), 7779.
Raynaud, D., Lorius, C., Budd, W.F. and Young, N.W. 1979. Ice flow along an I.A.G.P. flow line and interpretation of data from an ice core in Terre Adélie, Antarctica. F. Glaciol., 24(90), 103115.
Raynaud, D., Delmas, R., Ascencio, J.M. and Legrand, M. 1982. Gas extraction from polar ice cores: a critical issue for studying the evolution of atmospheric CO2 and ice-sheet surface elevation. Ann. Glaciol., 3, 265268.
Shreve, R.L. 1984. Glacier sliding at subfreezing temperature. F. Glaciol., 30(106), 341347.
Souchez, R.A. 1967. The formation of shear moraines: an example from south Victoria Land, Antarctica. J. Glaciol., 6(48), 837843.
Souchez, R.A. and Lorrain, R.D. 1978. Origin of the basal ice layer from Alpine glaciers indicated by its chemistry. F.Glaciol., 20(83), 319328.
Souchez, R. Α., Lorrain, R., Tison, J. -L. and Jouzel, J. 1988. Co-isotopic signature of two mechanisms of basal-ice formation in Arctic outlet glaciers. Ann. Glaciol., 10, 163166.
Souchez, R. Α., Lemmens, M., Lorrain, R., Tison, J. -L., Jouzel, J. and Sugden, D. 1990. Influence of hydroxyl-bearing minerals on the isotopic composition of ice from the basal zone of an ice sheet. Nature, 345(6272), 244246.
Sugden, D.E. and 6 others. 1987. Evidence for two zones of debris entrainment beneath the Greenland ice sheet. Nature, 328(6127), 238241.
Ward, W.H. 1952. The glaciological studies of the Baffin Island Expedition, 1950. Part II. The physics of deglaciation in central Baffin Island. F. Glaciol., 2(11), 922.
Weertman, J. 1957. On the sliding of glaciers. F. Glaciol., 3(21), 3338.
Weertman, J. 1961. Mechanism for the formation of inner moraines found near the edge of cold ice caps and ice sheets. F. Glaciol., 3(30), 965978.
Weertman, J. 1964. The theory of glacier sliding. F. Glaciol., 5(39), 287303.
Yao, T.D., Petit, J.R., Jouzel, J., Lorius, C. and Duval, P. 1990. Climatic record from an ice margin area in East Antarctica. Ann. Glaciol., 14, 323327.

Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adélie, Antarctica)

  • J. -L Tison (a1), J. -R. Petit (a2), J. -M. Barnola (a3) and W. C. Mahaney (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed