Skip to main content Accessibility help
×
Home

Crevasse initiation and history within the McMurdo Shear Zone, Antarctica

  • Lynn Kaluzienski (a1) (a2), Peter Koons (a1) (a2), Ellyn Enderlin (a3), Gordon Hamilton (a1) (a2), Zoe Courville (a4) and Steven Arcone (a4)...

Abstract

While large-scale observations of intensified fracture and rifting can be observed through remote-sensing observations, understanding crevasse initiation may best be achieved with small-scale observations in which crevasses can be directly observed. Here we investigate the kinematic drivers of crevasse initiation in the McMurdo Shear Zone (MSZ), Antarctica. We delineated 420 crevasses from ~95 km of 400 MHz frequency ground-penetrating radar data and compared these data with kinematic outputs derived from remotely-sensed ice surface velocities to develop a statistical method to estimate crevasse initiation threshold strain rate values. We found the MSZ to be dominated by simple shear and that surface shear strain rates proved best for predicting crevasse features, with regions of higher shear strain rate more likely to have a greater number of crevasses. In the surveyed portion of our study region, values of shear strain rate and vorticity rate derived from the MEaSUREs2 velocity dataset range between 0.005–0.020 and 0.006–0.022 a−1, respectively, with crevasses located at ≥0.011 and ≥0.013 a−1. While threshold values from this study cannot be directly applied to other glacial environments, the method described here should allow for the study of shear margin evolution and assessment of localized damage and weakening processes in other locations where in situ data are available.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Crevasse initiation and history within the McMurdo Shear Zone, Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Crevasse initiation and history within the McMurdo Shear Zone, Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Crevasse initiation and history within the McMurdo Shear Zone, Antarctica
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Lynn Kaluzienski, E-mail: lynn.kaluzienski@maine.edu

References

Hide All
Abramowitz, M and Stegun, I (1972) Handbook of Mathematical Functions with Formulas. National Bureau of Standards Applied Mathematics Series.
Arcone, SA and 5 others (2016) Ground-penetrating radar profiles of the McMurdo shear zone, Antarctica, acquired with an unmanned rover: Interpretation of crevasses, fractures, and folds within firn and marine icegpr profiles of the McMurdo shear zone. Geophysics 81(1), WA21WA34.
Arcone, SA and Delaney, AJ (2000) Gpr images of hidden crevasses in Antarctica. Eighth International Conference on Ground Penetrating Radar, vol. 4084, International Society for Optics and Photonics, pp. 760–766.
Arthern, RJ, Winebrenner, DP and Vaughan, DG (2006) Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. Journal of Geophysical Research: Atmospheres 111(D6), D06107
Banwell, AF, Willis, IC, Macdonald, GJ, Goodsell, B and MacAyeal, DR (2019) Direct measurements of ice-shelf flexure caused by surface meltwater ponding and drainage. Nature Communications 10(1), 730.
Banwell, AF and 6 others (2017) Calving and rifting on the McMurdo ice shelf, Antarctica. Annals of Glaciology 58, 7887.
Borstad, C (2012) A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically-based calving law. Geophysical Research Letters 39(18), L18502.
Borstad, C, McGrath, D and Pope, A (2017) Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity. Geophysical Research Letters 44(9), 41864194.
Borstad, C and 5 others (2016) A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen b ice shelf. Geophysical Research Letters 43(5), 20272035.
Campbell, S, Courville, Z, Sinclair, S and Wilner, J (2017) Brine, englacial structure and basal properties near the terminus of McMurdo ice shelf, Antarctica. Annals of Glaciology 58(74), 111.
Colgan, W and 6 others (2016) Glacier crevasses: Observations, models, and mass balance implications. Reviews of Geophysics 54(1), 119161.
Courville, Z (2015) Overall shear zone report 2015. Contract report to National Science Foundation Office of Polar Programs Antarctic Infrastructure and Logistics Program.
Dupont, T and Alley, R (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophysical Research Letters 32(4), L04503.
Emetc, V, Tregoning, P, Morlighem, M, Borstad, C and Sambridge, M (2018) A statistical fracture model for Antarctic ice shelves and glaciers. The Cryosphere 12(10), 31873213.
Favier, L, Pattyn, F, Berger, S and Drews, R (2016) Dynamic influence of pinning points on marine ice-sheet stability: A numerical study in dronning maud land, east Antarctica. The Cryosphere (Online) 10(6), 26232635.
Gardner, AS and 6 others (2018) Increased west Antarctic and unchanged east Antarctic ice discharge over the last 7 years. Cryosphere 12(2), 521547.
Kehle, RO (1964) Deformation of the ross ice shelf, Antarctica. Geological Society of America Bulletin 75(4), 259286.
Khazendar, A, Borstad, CP, Scheuchl, B, Rignot, E and Seroussi, H (2015) The evolving instability of the remnant Larsen B ice shelf and its tributary glaciers. Earth and Planetary Science Letters 419, 199210
Kovacs, A, Gow, AJ and Cragin, J (1982) The brine zone in the McMurdo ice shelf, Antarctica. Annals of Glaciology 3, 166171.
Lever, JH (2002) Shear zone bridge safety analysis. Contract report to US Antarctic Program (National Science Foundation) and Raytheon Polar Services.
Lever, JH and 5 others (2013) Autonomous gpr surveys using the polar rover yeti. Journal of Field Robotics 30(2), 194215.
MacDonald, G and 5 others (2019) Formation of pedestalled, relict lakes on the McMurdo ice shelf, Antarctica. Journal of Glaciology 65(250), doi: 10.1017/jog.2019.17.
MacGregor, JA, Catania, GA, Markowski, MS and Andrews, AG (2012) Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen sea embayment between 1972 and 2011. Journal of Glaciology 58(209), 458466.
McGrath, D (2012) Basal crevasses on the Larsen C ice shelf, Antarctica: Implications for meltwater ponding and hydrofracture. Geophysical Research Letters 39(16), L16504.
Meier, M (1958) Vertical profiles of velocity and the flow law of glacier ice. International Association of Scientific Hydrology 47, 169170.
Nath, P and Vaughan, D (2003) Subsurface crevasse formation in glaciers and ice sheets. Journal of Geophysical Research: Solid Earth 108(B1), 2020.
Reese, R, Gudmundsson, GH, Levermann, A and Winkelmann, R (2018) The far reach of ice-shelf thinning in Antarctica. Nature Climate Change 8(1), 53.
Rignot, E, Mouginot, J and Scheuchl, B (2011) Measures insar-based Antarctica ice velocity map. Science 333, 14271430.
Rignot, E, Mouginot, J and Scheuchl, B (2017) Measures insar-based Antarctica ice velocity map, version 2. Boulder, CO: NASA DAAC at the National Snow and Ice Data Center.
Scott, DW (1979) On optimal and data-based histograms. Biometrika 66(3), 605610.
Scott, JB, Smith, AM, Bingham, RG and Vaughan, DG (2010) Crevasses triggered on pine island glacier, west Antarctica, by drilling through an exceptional melt layer. Annals of Glaciology 51(55), 6570.
Trautmann, E, Ray, L and Lever, J (2009) Development of an autonomous robot for ground penetrating radar surveys of polar ice. 1685–1690.
Van de Berg, W, Van den Broeke, M, Reijmer, C and Van Meijgaard, E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. Journal of Geophysical Research: Atmospheres 111(D11), D11104.
Van der Veen, C (1999) Crevasses on glaciers. Polar Geography 23(3), 213245.
Vaughan, DG (1993) Relating the occurrence of crevasses to surface strain rates. Journal of Glaciology 39(132), 255266.
Vieli, A, Payne, A, Shepherd, A and Du, Z (2007) Causes of pre-collapse changes of the Larsen B ice shelf: Numerical modelling and assimilation of satellite observations. Earth and Planetary Science Letters 259(3–4), 297306

Keywords

Crevasse initiation and history within the McMurdo Shear Zone, Antarctica

  • Lynn Kaluzienski (a1) (a2), Peter Koons (a1) (a2), Ellyn Enderlin (a3), Gordon Hamilton (a1) (a2), Zoe Courville (a4) and Steven Arcone (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed