Skip to main content Accessibility help
×
Home

Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200

  • Nicholas E. Barrand (a1), Richard C.A. Hindmarsh (a1), Robert J. Arthern (a1), C. Rosie Williams (a1), Jérémie Mouginot (a2), Bernd Scheuchl (a2), Eric Rignot (a2) (a3), Stefan R.M. Ligtenberg (a4), Michiel R. Van Den Broeke (a4), Tamsin L. Edwards (a5), Alison J. Cook (a6) and Sebastian B. Simonsen (a7)...

Abstract

The contribution to sea level to 2200 from the grounded, mainland Antarctic Peninsula ice sheet (APIS) was calculated using an ice-sheet model initialized with a new technique computing ice fluxes based on observed surface velocities, altimetry and surface mass balance, and computing volume response using a linearized method. Volume change estimates of the APIS resulting from surface mass-balance anomalies calculated by the regional model RACMO2, forced by A1B and E1 scenarios of the global models ECHAM5 and HadCM3, predicted net negative sea-level contributions between −0.5 and −12 mm sea-level equivalent (SLE) by 2200. Increased glacier flow due to ice thickening returned ∼15% of the increased accumulation to the sea by 2100 and ∼30% by 2200. The likely change in volume of the APIS by 2200 in response to imposed 10 and 20 km retreats of the grounding line at individual large outlet glaciers in Palmer Land, southern Antarctic Peninsula, ranged between 0.5 and 3.5 mm SLE per drainage basin. Ensemble calculations of APIS volume change resulting from imposed grounding-line retreat due to ice-shelf break-up scenarios applied to all 20 of the largest drainage basins in Palmer Land (covering ∼40% of the total area of APIS) resulted in net sea-level contributions of 7–16 mm SLE by 2100, and 10–25 mm SLE by 2200. Inclusion of basins in the northern peninsula and realistic simulation of grounding-line movement for AP outlet glaciers will improve future projections.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200
      Available formats
      ×

Copyright

References

Hide All
Arthern, RJ and Hindmarsh, RCA (2003) Optimal estimation of changes in the mass of ice sheets. J. Geophys. Res., 108(F1), 6007 (doi: 10.1029/2003JF000021)
Bamber, JL, Gomez-Dans, JL and Griggs, JA (2009) A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: data and methods. Cryosphere, 3(1), 101111 (doi: 10.5194/tc-3-101-2009)
Barrand, NE and 6 others (2013) Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. J. Geophys. Res. Earth Surf., 118 (doi: 10.1029/2012JF002559)
Berthier, E, Scambos, TA and Shuman, CA (2012) Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophys. Res. Lett., 39(13), L13501 (doi: 10.1029/2012GL051755)
Cook, AJ and Vaughan, DG (2010) Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere, 4(1), 7798 (doi: 10.5194/tc-4-77-2010)
Cook, AJ, Fox, AJ, Vaughan, DG and Ferrigno, JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308(5721), 541544 (doi: 10.1126/science.1104235)
De Angelis, H and Skvarca, P (2003) Glacier surge after ice shelf collapse. Science, 299(5612), 15601562 (doi: 10.1126/science.1077987)
Ettema, J, Van den Broeke, MR, Van Meijgaard, E, Van de Berg, WJ, Box, JE and Steffen, K (2010) Climate of the Greenland ice sheet using a high-resolution climate model: Part 1: evaluation. Cryos. Discuss., 4(4), 511627 (doi: 10.5194/tc-4-511-2010)
Fowler, AC (1992) Modelling ice sheet dynamics. Geophys. Astrophys. Fluid Dyn., 63(1–4), 2965
Fretwell, P and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375393 (doi: 10.5194/tc-7-375-2013)
Glen, JW (1955) The creep of polycrystalline ice. Proc. R. Soc. London, Ser. A, 228(1175), 519538 (doi: 10.1098/rspa.1955.0066)
Goldberg, DN, Little, CM, Sergienko, OV, Gnanadesikan, A, Hallberg, R and Oppenheimer, M (2012a) Investigation of land ice–ocean interaction with a fully coupled ice–ocean model: 1. Model description and behavior. J. Geophys. Res., 117(F2), F02037 (doi: 10.1029/2011JF002246)
Goldberg, DN, Little, CM, Sergienko, OV, Gnanadesikan, A, Hallberg, R and Oppenheimer, M (2012b) Investigation of land ice–ocean interaction with a fully coupled ice–ocean model: 2. Sensitivity to external forcings. J. Geophys. Res., 117(F2), F02038 (doi: 10.1029/2011JF002247)
Haran, T, Bohlander, J, Scambos, T, Painter, T and Fahnestock, M (2006) MODIS mosaic of Antarctica (MOA) image map. National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/moa/
Higham, NJ and Tisseur, F (2000) A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl., 12(4), 11851201
Hindmarsh, RCA (1997) Use of ice-sheet normal modes for initialization and modelling small changes. Ann. Glaciol., 25, 8595
Hindmarsh, RCA (2006) The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice-sheets: back-pressure and grounding line motion. Philos. Trans. R. Soc. London A., 364(1844), 17331767 (doi: 10.1098/rsta.2006.1797)
Hindmarsh, RCA (2012) An observationally validated theory of viscous flow dynamics at the ice-shelf calving front. J. Glaciol., 58(208), 375387 (doi: 10.3189/2012JoG11J206)
Hindmarsh, RCA, Leysinger Vieli, GJM, Raymond, MJ and Gudmundsson, GH (2006) Draping or overriding: the effect of horizontal stress gradients on internal layer architecture in ice sheets. J. Geophys. Res., 111(F2), F02018 (doi: 10.1029/2005JF000309)
Hock, R, De Woul, M, Radić, V and Dyurgerov, M (2009) Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett., 36(7), L07501 (doi: 10.1029/2008GL037020)
Hutter, K (1983) Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. D. Reidel, Dordrecht/ Terra Scientific, Tokyo
Ivins, ER, Watkins, MM, Yuan, D-N, Dietrich, R, Casassa, G and Rülke, A (2011) On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J. Geophys. Res., 116(B2), B02403 (doi: 10.1029/2010JB007607)
Joughin, I, MacAyeal, DR and Tulaczyk, S (2004) Basal shear stress of the Ross ice streams from control method inversions. J. Geophys. Res., 109(B9), B09405 (doi: 10.1029/2003JB002960)
Korona, J, Berthier, E, Bernard, M, Rémy, F and Thouvenot, E (2009) SPIRIT. SPOT 5 stereoscopic survey of polar ice: reference images and topographies during the fourth International Polar Year (2007–2009). ISPRS J. Photogramm. Remote Sens., 64(2), 204212 (doi: 10.1016/j.isprsjprs.2008.10.005)
Lenaerts, JTM, Van den Broeke, MR, Van de Berg, WJ, Van Meijgaard, E and Kuipers Munneke, P (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39(4), L04501 (doi: 10.1029/2011GL050713)
Ligtenberg, SRM, Van de Berg, WJ, Van den Broeke, MR, Rae, JGL and Van Meijgaard, E (in press) Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dyn. (doi: 10.1007/s00382-013-1749-1)
MacAyeal, DR (1992) The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods. J. Geophys. Res., 97(B1), 595603
Morland, LW (1984) Thermomechanical balances of ice sheet flows. Geophys. Astrophys. Fluid Dyn., 29(1–4), 237266 (doi: 10.1080/03091928408248191)
Morlighem, M, Rignot, E, Seroussi, H, Larour, E, Ben Dhia, H and Aubry, D (2010) Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett., 37(14), L14502 (doi: 10.1029/2010GL043853)
Morlighem, M, Rignot, E, Seroussi, H, Larour, E, Ben Dhia, H and Aubry, D (2011) A mass conservation approach for mapping glacier ice thickness. Geophys. Res. Lett., 38(19), L19503 (doi: 10.1029/2011GL048659)
Morris, EM and Vaughan, DG (2003) Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of viability of ice shelves. In Domack, E, Leventer, A, Burnett, A, Bindschadler, RA, Convey, P and Kirby, M eds. Antarctic Peninsula climate variability – historical and paleoenvironmental perspectives. (Antarctic Research Series 79) American Geophysical Union, Washington, DC, 6168
Pritchard, HD and Vaughan, DG (2007) Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. J. Geophys. Res., 112(F3), F03S29 (doi: 10.1029/2006JF000597)
Radić, V and Hock, R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geosci., 4(2), 9194 (doi: 10.1038/ngeo1052)
Rignot, E, Casassa, G, Gogineni, P, Krabill, W, Rivera, A and Thomas, R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett., 31(18), L18401 (doi: 10.1029/2004GL020697)
Rignot, E and 6 others (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci., 1(2), 106110 (doi: 10.1038/ngeo102)
Rignot, E, Mouginot, J and Scheuchl, B (2011) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Rott, H, Müller, F, Nagler, T and Floricioiu, D (2011) The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula. Cryosphere, 5(1), 125134 (doi: 10.5194/tc-5-125-2011)
Scambos, TA, Hulbe, C, Fahnestock, M and Bohlander, J (2000) The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46(154), 516530 (doi: 10.3189/172756500781833043)
Schoof, C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res., 112(F3), F03S28 (doi: 10.1029/2006JF000664)
Seroussi, H and 6 others (2011) Ice flux divergence anomalies on 79north Glacier, Greenland. Geophys. Res. Lett., 38(9), L09501 (doi: 10.1029/2011GL047338)
Shepherd, A and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Shuman, CA, Berthier, E and Scambos, TA (2011) 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol., 57(204), 737754 (doi: 10.3189/002214311797409811)
Thomas, ER, Marshall, GJ and McConnell, JR (2008) A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophys. Res. Lett., 35(1), L01706 (doi: 10.1029/2007GL032529)
Turner, J and 8 others (2005) Antarctic climate change during the last 50 years. Int. J. Climatol., 25(3),279294 (doi: 10.1002/joc.1130)
Uppala, SM and 45 others (2005) The ERA-40 re-analysis. Q. J. R. Meteorol. Soc., 131(612), 29613212 (doi: 10.1256/qj.04.176)
Van den Broeke, M (2005) Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett., 32(12), L12815 (doi: 10.1029/2005GL023247)
Van Meijgaard, E and 6 others (2008) The KNMI regional atmospheric climate model RACMO version 2.1. (KNMI Technical Report TR-302) Royal Netherlands Meteorological Institute (KNMI), De Bilt
Vaughan, D (2006) Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arct. Antarct. Alp. Res., 38(1), 147152 (doi: 10.1657/1523-0430(2006)038[0147:RTIMCO]2.0.CO;2)
Vaughan, DG and Doake, CSM (1996) Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature, 379(6563), 328331 (doi: 10.1038/379328a0)
Vaughan, DG and 8 others (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60(3), 243274
Vieli, A and Payne, AJ (2003) Application of control methods for modelling the flow of Pine Island Glacier, Antarctica. Ann. Glaciol., 36, 197204 (doi: 10.3189/172756403781816338)
Weertman, J (1957) On the sliding of glaciers. J. Glaciol., 3(21), 3338
Williams, CR, Hindmarsh, RCA and Arthern, RJ (2012) Frequency response of ice streams. Proc. R. Soc. London, Ser. A, 468(2147), 32853310 (doi: 10.1098/rspa.2012.0180)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed